

INTHESEAGRANT TR.75.0

The University of Hawaii Sea Grant Program

Engineering Investigation of Marine Alternatives for Rapid Transit in Oahu, Hawaii

Theodore T. Lee and Steven A. Nicinski

August 1975

ENGINEERING INVESTIGATION OF MARINE ALTERNATIVES FOR RAPID TRANSIT IN OAHU, HAWAII

by

Theodore T. Lee Steven A. Nicinski

Report on work supported by Sea Grant project, Marine Alternatives for Mass Transit in Hawaii (R/37-01); Theodore T. Lee, Principal Investigator; Sea Grant Years 04 - 05.

Sea Grant Technical Report UNIHI-SEAGRANT-TR-75-04

August 1975

This work is a result of research sponsored by NOAA Office of Sea Grant, Department of Commerce, under Grant Nos. 2-35243 and 04-5-158-29. The U.S. Government is authorized to produce and distribute reprints for governmental purposes notwithstanding any copyright notations that may appear hereon.

ABSTRACT

This report covers the preliminary study of the Marine alternatives to the land-based rapid transit system for the City and County of Honolulu to be operational by 1979.

The marine alternative, known as the Oceanic Express System, was originally initiated in 1972 by Dr. John P. Craven, State Marine Affairs Coordinator and Dean of Marine Programs, University of Hawaii. It is intended to serve as a complementary or a major aspect of the mass transportation system on Oahu, Hawaii. The Oceanic Express System will consist of a water-based mass transit system linked together with multiple loops via inland waterways, which are to be constructed with the existing drainageways, to serve high-density locales and suburbs in Honolulu. It can be considered as an interim and/or supplementary transportation system to the land-based system.

The objective of this study is to determine, particularly from engineering viewpoints, the feasibility of the inland waterways system which will convert the existing canals and drainage streams into navigable channels.

Major efforts under this study include study of: the hydrological and oceanographic constraints; dredging requirements; canal feeder boat requirements; and preliminary cost data involving initial construction, operation, and maintenance of the waterway potential of four selected drainageways on Oahu-Ala Wai Canal and Manoa-Palolo Stream, Nuuanu Stream, Kapalama Drainage Channel, and Kalihi Stream. These waterways will be related to four local route systems, namely Hawaii Kai, Kahala, Ala Wai, and Moanalua-Kapalama-Nuuanu.

A total of 23 feeder boats will be required. The total capital cost for the feeder boats, terminals, stop stations, initial dredging, maintenance facilities, reconstruction of road bridges, and land acquisition was estimated to be \$23 million (1972). Additional capital and replacement costs over a 30-year period are estimated to be \$7 million. During the 30-year period, the operational and maintenance costs would be \$95 million. The annual cost was estimated at about \$4 million. Reconstruction of road bridges and annual maintenance dredging in each waterway are the most expensive items. The total waterway system will be 16 miles long and the annual cost will be about \$271,000 per mile per year.

It was concluded that the construction, operation, and maintenance of the four selected waterways seem to be technically feasible; but their economic feasibility cannot be determined until the entire Oceanic Express System is thoroughly analyzed. This analysis is beyond the scope of this study.

The Ala Wai route is considered to have the best potential for being converted into a waterway for navigational purposes.

TABLE OF CONTENTS

INTRODUC	TION
WATERWAY:	S POTENTIAL OF FOUR DRAINAGEWAYS ON OAHU, HAWAII 2
Fre: Man	shwater Runoff in the Ala Wai Canal and oa-Palolo Stream
	iment Yields
Batl	hymetry and Initial Dredging Requirements
Othe	er Constraints
Can	al Feeder Boat Requirements
PRELIMINA	ARY COST ESTIMATES
SUMMARY A	AND TENTATIVE CONCLUSIONS
ACKNOWLE	DGMENTS
REFERENC.	ES CITED
APPENDIC	ES
App Hyd	endix A. General Procedure for Preparing Runoff rographs at Ala Wai Canal
	endix B. Bathymetric Survey Results 61
	LIST OF FIGURES
	LIST OF FIGURES
Figure	
1	Ala Wai Canal and Manoa-Palolo Watersheds
2a	Representation of monthly hydrographs predicted for Manoa-Palolo Stream based on mean monthly rainfalls and the water surface records of water year 1969 4
2Ь	Design hydrograph for 100-year storm, 1-hour rainfall of 10 inches (T _C = 1.0 hr) at Manoa-Palolo Stream (Ala Wai Canal)
2c	Design hydrograph for 100-year storm, 1-hour rainfall of 6 inches (T _C = 1.0 hr) at Manoa-Palolo Stream (Ala Wai Canal)
2 d	Design hydrograph for 100-year storm, 1-hour rainfall of 4 inches (T _c = 1.0 hr) at Manoa-Palolo Stream (Ala Wai Canal)

LIST OF FIGURES (continued)

Figure	
2e	Design hydrograph for 100 -year storm, 1 -hour rainfall of 4 inches (T_C = 0.6 hr) at Manoa-Palolo Stream (Ala Wai Canal)
3	Relation between suspended sediment discharge and water discharge, Kalihi Stream, Honolulu for water years 1967 through 1970
4a	Record of tide measurements taken on December 24, 1972 as compared with predicted tide by Dillingham Corporation 18
4b	Record of tide measurements taken on December 25, 1972 as compared with predicted tide by Dillingham Corporation 16
5	Proposed feeder boat for inland waterways
	Appendix A
A1	Manoa-Palolo Drainage Basin
A2	Nomograph for determination of time of concentration 39
А3	Mean monthly rainfall at Manoa-Palolo Stream watershed 40
A4	Manoa-Palolo Stream rainfall-frequency-duration for one year storm
A5	Relation between direct runoff and rainfall as a function of runoff curve number
A 6	Relation between direct runoff and rainfall as a function of runoff curve number
A7	Duration of excess rainfall as a function of rainfall runoff curve number
A8	Hydrograph family number as a function of rainfall and runoff curve number
	Appendix B
B1	Bathymetric survey results of Ala Wai Canal 63
82	Bathymetric survey results of Manoa-Palolo Drainage Canal 67
B3	Bathymetric survey results of Nuuanu Stream
B4	Bathymetric survey results of Kapalama Stream 69

LIST OF TABLES

Table	
1	Estimated suspended load yield from Manoa-Palolo Stream 9
2	Predicted suspended load yield from Manoa-Palolo Stream from a single storm
3	Estimated suspended sediment yields of selected streams on Oahu
4	Predicted annual suspended load yield from Manoa-Palolo Stream
5	Predicted annual maintenance dredging required for the proposed major waterways
6	Initial dredging required of the proposed inland waterways 13
7	Comparison between tidal height of Dillingham tide calendar and Steven's water level recorder
8	Fundamental seiche periods in the Ala Wai Canal 18
9	Preliminary cost estimates of the proposed inland waterways feeder boat system
10	Summary of cost analysis
	Appendix A
A1	Forest type of Manoa-Palolo Watershed
A2	Soil type of Manoa-Palolo Watershed
A3	Mean precipitation (inches) estimated for each storm during each month
A4	Conditions of design storms
A5	Rainfall prior to excess rainfall (P*) vs runoff curve number (CN)
A6	Rainfall ratio P^*/P vs time ratio $(T_0/storm\ duration)$ 47
A7	Hydrograph computation for January, February, April and June
A8	Hydrograph computation for March
A9	Hydrograph computation for May, July, and August 51

LIST OF TABLES (continued)

Table	
A10	Hydrograph computation for September 52
All	Hydrograph computation for October
A12	Hydrograph computation for November
A13	Hydrograph computation for December
A14	Hydrograph computation (100-yr, 6-hr rainfall of 10 inches, $T_C = 1$ hr, $T_O/T_p = 10$)
A15	Hydrograph computation (100-yr, 6-hr rainfall of 10 inches, $T_c = 1$ hr, $T_0/T_p = 6$)
A16	Hydrograph computation (100-yr, 1-hr rainfall of 6 inches, T _c = 1 hr)
A17	Hydrograph computation (100-yr, 1-hr rainfall of 4 inches, T _c = 1 hr)
A18	Hydrograph computation (100-yr, 1-hr rainfall of 4 inches, $T_c = 0.6 \text{ hr}$)

INTRODUCTION

A land-based rapid transit system has been under serious consideration by the City and County of Honolulu to be operational by 1979. The proposed rapid transit system consists of electrically-powered, automatically-controlled vehicles operating in trained units on a fixed guideway as the main trunk line element of the recommended trunk line feeder concept by Daniel, Mann, Johnson, and Mendenhall of Hawaii (DMJM, 1972).

The marine alternatives to land-based mass transit, as either a complementary or a major aspect of the system, have not been fully explored. The State Marine Affairs Coordinator, Dr. John P. Craven, initiated the Oceanic Express System study. The total Oceanic Express System will consist of a water-based mass transit system linked together with multiple loops via inland waterways, which are to be constructed with the existing canals and streams, to serve high-density locales and suburbs in the City and County of Honolulu. It was estimated that the marine transit system could be developed by 1975, as compared with 1979 for the land-based system. More recently, Lulejian and Associates, under sub-contract with DMJM, made an initial exploratory evaluation of the feasibility of a water transportation system (DMJM, 1972). Its tentative conclusion was that the marine system may be considered as an interim and/or supplementary transportation system to the land-based system. However, DMJM (1972) later studied briefly the costs, service characteristics, and the environmental impacts of several marine alternatives of the integrated transit system and concluded that the marine transportation system is not feasible.

The objective of this study is to determine, particularly from the viewpoints of engineering aspects, the feasibility of the inland waterways subsystem which will convert the existing canals and drainage streams into navigable channels.

This study was initiated in March 1972 as an 04 midyear start, with Program Management funds of the Sea Grant Program at the University of Hawaii. This resulted in a pilot study (Nicinski et al., 1972) involving site selections of those existing canals and streams which could be improved as inland waterways, requirements of canal dimensions, criteria for the feeder boats, local route systems, and patronage characteristics.

This report covers the preliminary findings of the 05 Year study during the period from September 1972 to January 1973. Major efforts include study of hydrological and oceanographic constraints, canal feeder boat requirements, and preliminary cost data for four selected local route systems--Hawaii Kai, Kahala, Ala Wai, and Moanalua-Kapalama-Nuuanu. Special attention was paid to the Ala Wai route. Information for the other routes was provided from approximations based on the Ala Wai system; therefore, it should be re-examined following the similar procedure as for the Ala Wai, particularly in the determination of maintenance dredging requirements. The estimated costs were based on the best information currently available and, in many cases, reference was made to the unit cost information from the report by DMJM (1972).

WATERWAYS POTENTIAL OF FOUR DRAINAGEWAYS ON OAHU, HAWAII

Craven (1972) proposed an inland waterway system utilizing the existing drainage channels. Pertinent hydrological and oceanographic data are scarce. Basic surface water records are maintained by the U.S. Geological Survey, Hawaii for selected streams; but they are not in a form suitable for evaluation of the hydrological and oceanographic constraints which include runoff, water level variations, sedimentation involving initial and maintenance dredging to maintain desirable water depth, and water current velocities during normal and flood conditions.

Preliminary investigation has shown that the following local canal feeder systems merit detailed engineering investigation: Hawaii Kai, Kahala, Ala Wai Canal and Manoa-Palolo Stream, and Moanalua-Kapalama-Nuuanu. This report is concerned with the potential, as a navigable waterway, of the Ala Wai Canal and Manoa-Palolo Stream, Nuuanu Stream, and the Kapalama Drainage Channels with emphasis on the Ala Wai Canal and Manoa-Palolo Stream. Included are hindcasts of runoffs on a monthly basis from rainfall information and watershed characteristics. Representative hydrographs have been developed and are used to predict the annual sediment yield in the drainage-ways from which the cost of maintenance dredging is estimated.

Included are the results of bathymetric surveys of the four drainageways and their analysis to determine the initial dredging requirements.

Several attempts were made to measure the currents in the Ala Wai Canal. These were not successful due to the low-sensitivity of the hand-held current meter even during ebb and flood tides. Surface runoff was negligible at the time of measurement. It is concluded that currents in the waterways should be measured during floods so that their effect on navigation can be assessed.

Freshwater Runoff in the Ala Wai Canal and Manoa-Palolo Stream

The Ala Wai Canal (Figure 1) is dominately a drainageway despite its label. It consists of two straight sections, each having two near-vertical, parallel sides. The shorter seaward segment is approximately 2,830 ft long and 165 ft wide. The longer leeward segment, which receives the freshwater runoffs from the Manoa and Palolo Streams, is 7,590 ft long and 250 ft wide. The freshwater runoffs into the Ala Wai Canal are from two separate drainage basins--Manoa watershed (5.72 sq mi) and Palolo watershed (3.63 sq mi)--having a total drainage area of 9.35 sq mi (Figure 1). In addition, the freshwater runoff is also discharged into the canal from the Makiki watershed (3.72 sq mi) but it has an insignificant effect on the waterways; therefore, a study of this watershed was not made.

The U.S. Soil Conservation Service (1972) "synthesis method" was used in the construction of runoff hydrographs typical of each month and for design flood conditions as shown in Figure 2. The computational procedure is given in Appendix A.

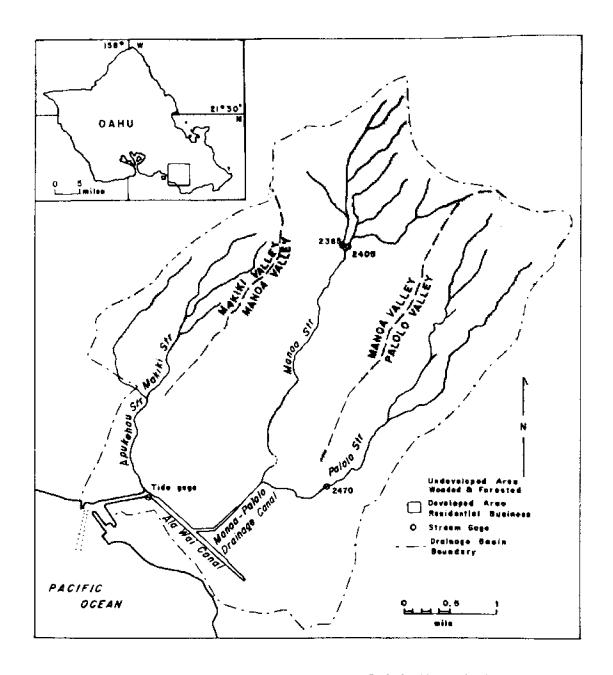


Figure 1. Ala Wai Canal and Manoa-Palolo Watersheds.

(Gonzalez, 1971)

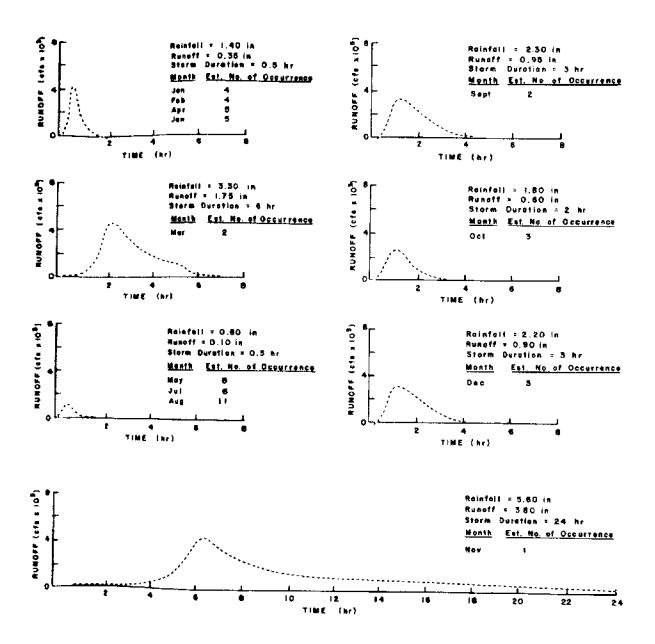
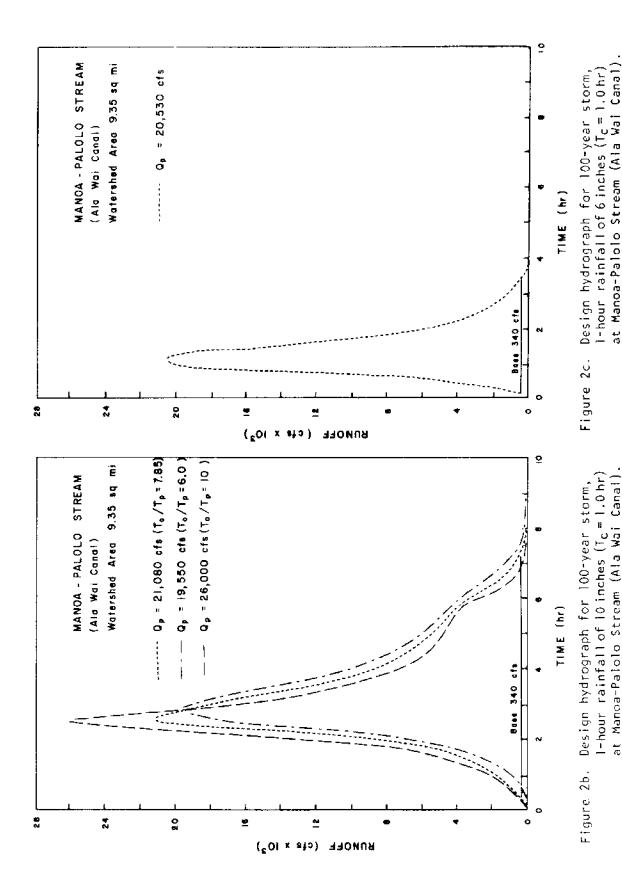
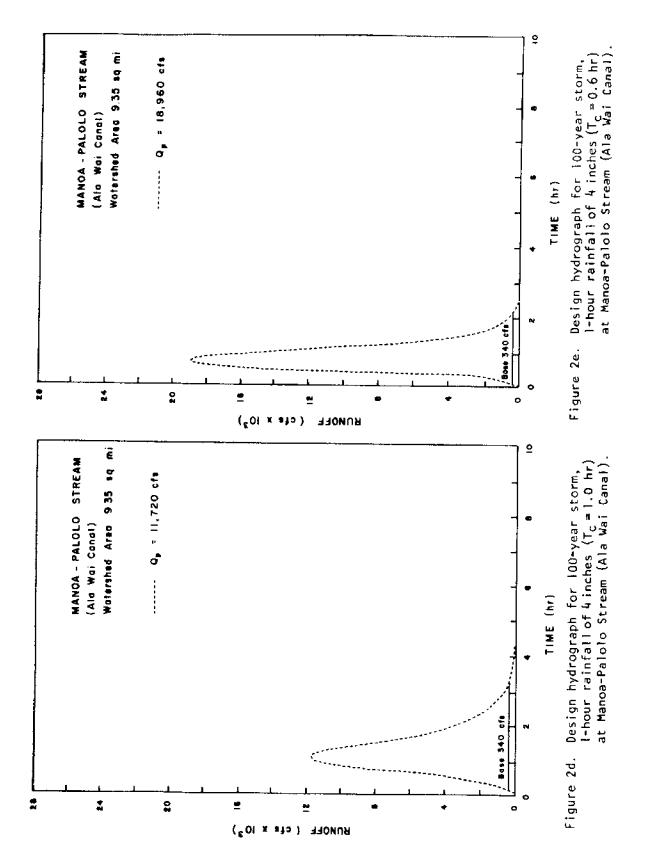




Figure 2a. Representation of monthly hydrographs predicted for Manoa-Palolo Stream based on mean monthly rainfalls and the water surface records of water year 1969.

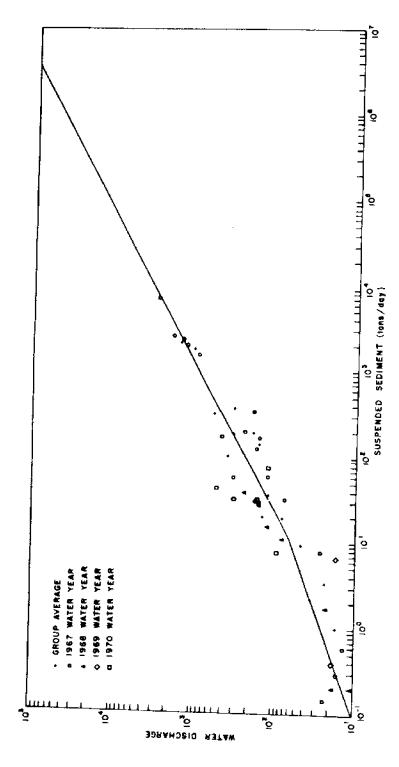
5

at Manoa-Palolo Stream (Ala Wai Canal).

The freshwater runoff into other proposed waterways is yet to be determined.

Sediment Yields

The direct freshwater runoff into the stream channels forms the bulk of the flow which generally is responsible for most of the sediment transport in the streams. This direct runoff from a given area represents the integrated effects of all characteristics of the drainage basin and of the superimposed environment upon sediment production. There are a number of empirical equations available for estimating the sediment yields from maximum yearly peak discharge, area of drainage basin, and density of cover as a percentage of the watershed area. However, they are not quite applicable to the small watersheds of the Hawaiian Islands.


For this study, sediment prediction was made from runoff-frequency data including both long-term, flow-duration curve and short-term, representative hydrograph for each month and the runoff-sediment relationship established for any given watershed from actual measurements of suspended sediments in the stream in question.

Due to lack of rating curves for Manoa-Palolo Stream, Nuuanu Stream, and Kapalama Stream, the rating curve established for the nearby Kalihi Stream was used (Figure 3). Then the sediment yields were computed for each month using the representative hydrographs respectively. The results are shown in Table 1. The sediment yields from the Manoa-Palolo Stream were estimated to be 11,900 tons per year under normal-year operational conditions. This contribution could be increased further by 3,300 up to 14,250 tons per year under extreme design flood conditions (Tables 2 and 3).

The annual sediment yield of 11,900 tons per year compares very well with 9,080 tons per year predicted with the long-range, flow-duration curve and the sediment-rating curve method used by Jones et al. (1971; Table 4) and this in turn with the estimation by Gonzales (1971; Table 4). He reported that the average rate of sediment deposition in the sill section between the intersection of Manoa-Palolo Stream and Ala Wai Canal toward the McCully Street bridge was about 0.65 ft per year, which is equivalent to 12,700 tons per year.

Based on the information from the Manoa-Palolo Stream, the sediment yield is estimated to be 4,700 and 10,400 tons per year under respectively normal and design flood conditions for the Makiki watershed, and similarly 10,750/23,600, 3,270/7,200, and 6,600/14,600 tons per year for the Nuuanu, Kapalama, and Kalihi Streams, respectively (Table 3).

For the Kalihi Stream, Jones et al. (1971) found that of the total load, approximately 60 percent is suspended sediment and 40 percent is bed load.

Relation between daily suspended sediment discharge and water discharge, Kalihi Stream, Honolulu for water years 1967 through 1970. Figure 3.

(Based on Jones et al., 1971 and U.S. Geological Survey, 1969 and 1970.)

TABLE 1. ESTIMATED SUSPENDED LOAD YIELD FROM MANOA-PALOLO STREAM

Month	Sediment Yield Per Storm (tons)	Estimated Number of Storms	Total Monthly Yield (tons)
Jan	220	4	880
Feb	220	4	880
Mar	1,090	2	2,180
Apr	220	5	1,100
May	30	8	240
Jun	220	4	880
Jul	30	6	180
Aug	20	11	330
Sep	520	2	1,040
0ct	290	3	870
Nov	1,880	1	1,880
Dec	480	3	1,440
TOTAL			11,900

TABLE 2. PREDICTED SUSPENDED LOAD YFELD FROM MANOA-PALOLO STREAM FROM A SINGLE STORM

Design Case	Rainfall Frequency	Q _p (cfs)	Suspended Sediment Yield (tons/year)
1	100-year, 6-hour rainfall of 10 inches (T _e = 1 hr)	21,080	14,250
Н	100-year, 1-hour rainfall of 6 inches (T _e = 1 hr)	20,530	8,130
Ш	100-year, 1-hour rainfall of 4 inches $(T_e = 1 \text{ hr})$	11,720	3,330
IV	100-year, 1-hour rainfall of 4 inches $ (T_e = 0.6 \text{ hr}) $	18,960	4,690

ESTIMATED SUSPENDED SEDIMENT YIELDS OF SELECTED STREAMS ON OAHU TABLE 3.

Mannear Area Drainage (tons/year) (tons/year, 4rea Drainage (tons/year) (tons/year, 4rea Drainage (tons/year) (tons/year, 4rea Drainage (tons/year) (tons/year		Major	Str	e a m s	A	Annual Sedi	Sediment Yield	
i Manoa- Palolo 9.35) Hakiki 3.72) Hakiki 5.18 Hakiki	Proposed Inland Waterway	Name	Watershed Area (sq mi)	Total Drainage Area	Normal (tons/year)	Condition (tons/year/sq mi)	Extrem Flood ((tons/year) (e Design Condition tons/year/sq mi)
Makiki 3.72) 15.07 4,730* 1,270 10,400* Pauca 1.43) 8.45 10,750* 1,270 23,600* Nuutanu 7.02) 8.45 3,270* 1,270 7,200* Kapalama 2.57 2.57 3,270* 1,270 7,200* Kalihi 5.18 5.18 6,600* 14,600*	Ala Wai	Manoa- PaloIo	9.35)		11,900	1,270	26,150	2,800
Pauca 1.43) 8.45 10,750* 1,270 23,600* Nuuanu 7.02) 8.45 3,270* 1,270 7,200* 14,600*		Makiki	3.72)	13.0/	4,730*	1,270	10,400* 36,550	2,800
• Kapalama 2.57 2.57 3,270* 1,270 7,200* Kalihi 5.18 6,600* 1,270 14,600*	Nuuanu	Pauca Neuanu	1.43)	8.45	10,750*	1,270	23,600*	2,800
Kalihi 5.18 6,600* 1,270 14,600*	(apalama	Kapalama	2.57	2.57	3,270*	1,270	7,200*	2,800
	(a l í h i	Kalihi	5.18	5.18	¥009 * 9	1,270	14,600*	2,800

*Estimeted using information developed from detailed sedimentation analysis of Manoa-Palolo Stream.
Similar rigorous analysis may be necessary to obtain better information for these streams. However,
the data extrapolated from Manoa-Palolo may be considered adequate for preliminary engineering
purposes.

TABLE 4. PREDICTED ANNUAL SUSPENDED LOAD YIELD FROM MANOA-PALOLO STREAM

Case	Method	Suspended Sediment Yield (tons/year)
V	Hydrograph Method - mean monthly precipitation and estimated number of storms, and hindcasting of hydrographs based on rainfall and duration estimated from 1 year rainfall, duration atlas of TP-43	11,900
VI	Flow-duration curve and suspended sediment rating curve yield method (Jones et al., 1971)	9,080
ν	Bathymetry Information (Gonzalez, 1971)	12,700*

^{*}Based on 60 lb/ft3 dry weight of sediment computed.

The total loads for each stream represent the maintenance dredging required annually (Table 5).

Bathymetry and Initial Dredging Requirements

Bathymetric surveys were made of the Ala Wai Canal, Manoa-Palolo Stream, and the Nuuanu and Kapalama Drainage Channels in November 1972 using a portable echo sounding survey recorder (Model ES-130 A/ES-130 AVF) of the States Electronics Corporation. The results are shown in Figures B1 to B3 of Appendix B. Both longitudinal profiles and cross-sections were obtained for the purpose of determining initial dredging requirements. The design depth of each waterway was selected to be 6 ft below mean lower low water (MLLW), to assure at least 3 ft clearance between the boat and channel bottom. The canal feeder boat under consideration is a converted houseboat which has the following characteristics: beam of 12 ft; length of 34 ft; draft of 3 ft.

Heavy silting due to runoff from the Manoa-Palolo Drainage Basin was found in the section between the intersection of the Manoa-Palolo Stream and the Ala Wai Canal toward the McCully Street Bridge. From the McCully

TABLE 5. PREDICTED ANNUAL MAINTENANCE DREDGING REQUIRED FOR THE PROPOSED MAJOR WATERWAYS

Suspended Load Bed Load (tons/year) (tons/year) 16,630 + 11,000 10,750 + 7,160 3,270 + 2,180	Proposed Inland	Estimated A	ope Ope	Annual Sediment Yields Under Operational Condition	ields Under dition	Estimated Annual Sediment Yields Under Design Flood Condition	d Annual Sediment Yield Design Flood Condition	t Yie	lds Under
16,630 + 11,000 10,750 + 7,160 3,270 + 2,180		uspended Loa (tons/year)	D.	Bed Load (tons/year)	Total Load (tons/year)	Suspended Load (tons/year)	Bed Load (tons/year)	 ₂ 2	Total Load (tons/year)
10,750 + 7,160 3,270 + 2,180	la Wai	16,630	+	11,000 =	27,630	36,550 +	24,300	н	60,850
3,270 + 2,180	nuenr	10,750	+	7,160 =	17,910	23,600 +	15,700	И	39,300
	npalama	3,270	+	2,180 =	5,450	7,200 +	4,800	n	12,000
Kalihi 6,600 + 4,400 =	l în î	6,600	+	4,400 =	11,000	14,600 +	9,740	Œ	24,340

Street bridge toward the ocean, the water depth was generally found to be adequate to meet the 6-ft design requirement. The existing water in the Manoa-Paiolo, Nuuanu, and Kapalama Drainage Channels is very shallow, i.e., depths of 2 to 3 ft (MLLW). Considerable dredging is required.

The width of the Ala Wai Canal ranges from 165 to 250 ft. This is considered more than adequate to accommodate the proposed two-way feeder boat service. The width of the Manoa-Palolo, Nuuanu, and Kapalama Drainage Channels ranges from 80 to 110 ft which may still be sufficient for two-way traffic under well-maintained channel depth conditions.

The quantities of initial dredging required are listed in Table 6.

TABLE 6. INITIAL DREDGING REQUIRED OF THE PROPOSED INLAND WATERWAYS

Proposed Inland Waterway	Total Length (ft)	Width (ft)	initial Dredging Required (cu yd)
Ala Wai Canai	7,710	250	112,000
	2,380	165	
Manoa-Palolo	2,700	80-100	25,000
Nuuanu	2,590	90-100	22,000
Kapalama	3,840	110	70,000
TOTAL			229,000

Other Constraints

Backwater

Preliminary backwater computations indicated that the water-level variations in the Ala Wai Canal due to normal flood conditions are not significant as far as their effect on the vertical clearance between the boat and the bridge. However, this may not be the case for extreme flood conditions in which case the feeder boat services would have to be suspended because of high current speeds (about 10 ft/sec) and of high water in the channel. The frequency of such floods is unusual; hence, their occurrence is very low, as is their adverse effect on the feeder service. Thus they need not be considered seriously in the design of bridges. The water level at the highest tide plus the increase due to normal flood

runoff should be adequate for the determination of the minimum vertical clearance required under a bridge:

Highest tide	2.5 ft
Runoff allowance	0.5 ft
Minimum requirement from water surface to bridge	
underdeck for boat	9.0 ft
Safety allowance	2.0 ft
	14.0 ft

Therefore, the lowest point of the bridge should be 14 ft above MLLW.

Tide

A Stevens type water-level recorder was used to measure and record the sea level variations in the Ala Wai Canal at a point on the Ala Wai Boulevard side of the canal approximately midway between the Kalakaua Avenue bridge and McCully Street bridge (Figure I). Approximately 20 days of records were obtained. A typical record is shown in Figure 4. Tides in the canal were found to have the same phase and amplitude as those predicted for the Honolulu Harbor (Dillingham, 1972; Table 7).

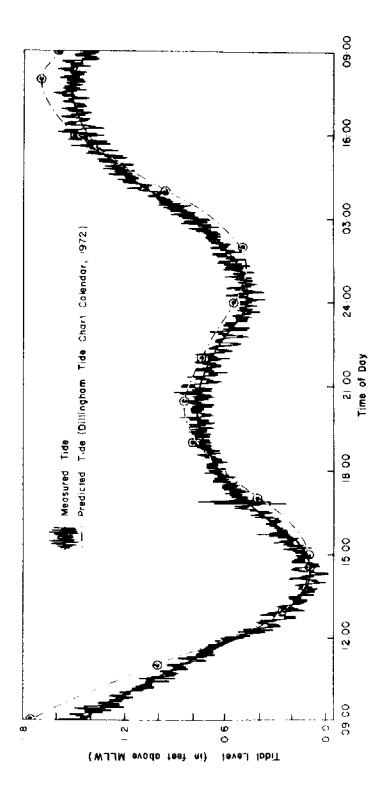
Seiche

Examination of the tidal records revealed that the predominant seiche periods are from 23 to 30 minutes with an average of 26 minutes (Table 8).

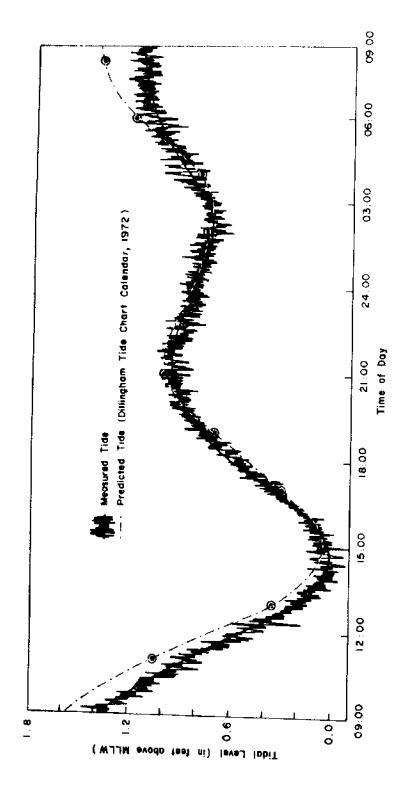
The measured seiche period of 26 minutes compares very well with that predicted by Merian's formula (Proudman, 1953):

$$T = \frac{2L}{\sqrt{gh}} = \frac{2 (10420)}{(32.2) (6) \times 60} = 26.1 \text{ minutes}$$

where


T is the seiche period in a narrow channel with vertical walls and flat bottom (10,420 ft for Ala Wai Canal) in seconds

L is the length of the channel in feet


h is the average depth in feet (6 ft for Ala Wai Canal)

g is the acceleration due to gravity: 32.2 ft/sec^2

These long oscillation periods will not affect the operation of the feeder boats because their natural period of oscillation is so much shorter, i.e., in the range of 3 to 5 seconds. The maximum seiche height is 0.38 ft with an average of 0.23 ft, i.e., the water-level oscillated approximately 0.10 ft above and below normal tidal level due to seiche action. If boats should moor at a node of the seiche then significant surge motion could be forced by the relatively fast oscillating water.

Record of tide measurements taken on December 24, 1972 as compared with predicted tide by Dillingham Corporation. Figure 4a.

Record of tide measurements taken on December 25, 1972 as compared with predicted tide by Dillingham Corporation. Figure 4b.

TABLE 7. COMPARISON BETWEEN TIDAL HEIGHT OF DELLINGHAM TIDE CALENDAR AND STEVEN'S WATER LEVEL RECORDER

	Date	(Dillingham Calendar) Tidal Height (ft)	(Steven's Water Level Recorder*) Tidal Height (ft)	
8	Dec 1972	₹.95	1.98	+0.03
9	Dec 1972	1.80	1.70	-0.10
14	Dec 1972	1.80	1.50	-0.30
18	Dec 1972	2.85	2.85	0.00
19	Dec 1972	2.80	2.75	-0.05
20	Dec 1972	2.85	2.85	-0.05
21	Dec 1972	2.60	2.55	-0.05
22	Dec 1972	2.25	2.25	0.00
24	Dec 1972	0.70	0.70	0.00
2 5	Dec 1972	0.90	0.93	0.00
26	Dec 1972	1.10	1.15	+0.05
27	Dec 1972	1.30	1.35	+0.05
28	Dec 1972	1.35	1.55	+0.20
29	Dec 1972	1.75	1.70	-0.05
30	Dec 1972	1.95	1.95	0.00
6	Jan 1973	1.95	1.90	-0.05
7	Jan 1973	1.70	1.55	-0.15

*Location of recorder: Ala Wai Canal

TABLE 8. TUNDAMENTAL SEICHE PERIODS IN THE ALA WAI CANAL

Date	Sciche Period (min)	Maximum Seiche Height (ft)
8 Dec 1972	30	0.23
9 Dec 1972	30	0.25
12 Dec 1972	25	0.18
13 Dec 1972	24	
14 Dec 1972	24	0.38
18 Dec 1972	23	0.30
19 Dec 1972	27	0.23
20 Dec 1972	23	0.23
21 Dec 1972	26	0.35
22 Dec 1972	27	0.25
24 Dec 1972	26	0.23
25 Dec 1972	26	0.18
26 Dec 1972	27	0.20
27 Dec 1972	28	0.18
2 8 De c 1972	26	0.22
29 Dec 1972	23	0.15
30 Dec 1972	26	0.22
5 Jan 1973	26	•
6 Jan 1973	26	0.18
7 Jan 1973	26	0.18
AVERAGE	26	

Canal Feeder Boat Requirements

The canal feeder boat as proposed is 34 ft long with a 12 ft beam and 3 ft draft and has a normal operating speed of 20 knots (Figure 5). It can carry 40 passengers and requires a minimum "headroom" from a waterline of 9 ft and costs about \$60,000 (DMJM, 1972).

Feeder boat service on the canal can be considered as a supplementary or complementary system (as recommended by DMJM, 1972) to the existing bus feeder system in the development of either a fixed guideway rapid transit system or an oceanic express transportation system (as proposed by Craven, 1971). The vehicle requirements cannot be established easily because of a lack of information on likely patronage. However, a study of the existing bus service schedule for the Hawaii Kai area has produced very useful information. It is found that the operational period is from 6:00 a.m. to 12:00 p.m., i.e., 18 hours, and is distributed as follows:

EXISTING BUS OPERATIONAL SCHEDULE FOR HAWAII KAI

Operational Interval		Time of Operati	
Ope	rational interval	3	Hours
a.	Peak hours: (1) 11 min (design)	10.4	1.9
ъ.	(1) 20 min	11.3	2.0
	(2) 33 min (3) 40 min	21.6 56.7	$\frac{3.9}{10.2}$
		100.0	18.0

The vehicle requirement is dependent upon the total length of the local route and the time for boarding and disembarking. Based on the bus information as shown above, determination was made of requirements for canal feeder boats operating at a normal speed of 20 knots over four routes as shown on page 21.

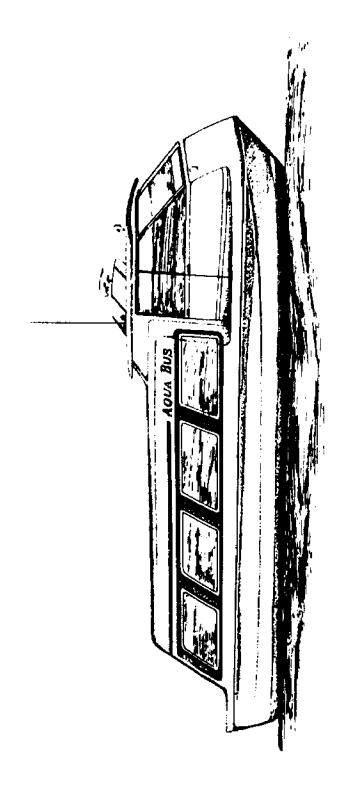


Figure 5. Proposed feeder boat for inland waterways. (Beam: 12 ft length) (Daniel, Mann, Johnson and Mendenhall of Hawaii, 1972)

LOCAL ROUTE SYSTEMS FOR THE OCEANIC EXPRESS SYSTEM

1. Hawaii kai Loop (Route 5)

1. Route Schedule

	Station	Arrival Time	Time
Α	Hawaii Kai Shopping Center	* - 	9:00
D	Wailua Street bridge	9:03	9:05
B	Maniniholo Street bridge	9:09	9:11
C	Opihikao Place	9:14	
		(Round Trip:	28 min)

2. Vehicle Requirement

Operational Interval		Time of Operation		Minimum Number of Vehicles Required	
			Hours	for 2-Way Traffic	
a.	Peak hours:				
	(1) 6 min (design)			3	
	(2) 11 min	10.4	1.9	2	
b.	Offpeak hours:				
	(1) 20 min	11.3	2.0	1	
	(2) 33 min	21.6	3.9	1	
	(5) 40 min	56.7	10.2	1	
		100.0	18.0		

11. Ala Wai/Manoa-Palolo Local

1. Route Schedule

	Station	Arrival I	Ceparture Time
Λ	Magic Island		9:00
В	Kalakaua Avenue bridge	9:02	9:04
C	Lewers Street	9:055	9:075
D	Waikiki-Kapahulu Library	9:095	9:12
Ē	Date Street bridge	9:15	9:17
	University of Hawaii	9:18	
		(Round Trip:	36 min)

2. Vehicle Requirement

Operational Interval		Time of Operation Hours		Minimum Number of Vehicles Required for 2-Way Traffic	
a.	Peak hours: (1) 6 min (design) (2) 11 min	10.4	1.9	7 4	
Ъ.	Offpeak hours: (1) 20 min (2) 33 min (3) 40 min	11.3 21.6 56.7 100.0	2.0 3.9 10.2 18.0	2 2 1	

III. Moanalua-Kapalama-Nuuanu Loop (Route 4)

1. Route Schedule

	Station	Arrival Time	Departure Time
A	Kikowaena Bridge (Moanalua)		9:00
В	Kamehameha Bridge (Moanalua)	9:02	9:04
С	Honolulu International Airport	9:06	9:08
Ð	Keehi Marina	9:10	9:12
E	Kapalama Military Reservation	9:14	9:16
F	Nimitz Highway bridge (Kapalama)	9:16	9:18
Ģ	H-1 bridge (Kapalama)	9:20	9:22
F	Nimitz Highway bridge (Kapalama)	9:24	9:26
H	Aloha Tower	9:31	9:33
I	Nimitz Highway bridge (Nuuanu)	9:34	9:36
J	Foster Botanical Garden	9:38	

(Round Trip: 76 min)

2. Vehicle Requirement

Operational Interval	Time of (Operation Hours	Minimum Number of Vehicles Required for 2-Way Traffic
a. Peak hours: (1) 6 min (design) (2) 11 min	10.4	1.9	10
b. Offpeak hours: (1) 20 min (2) 33 min (3) 40 min	11.3 21.6 56.7	2.0 3.9 10.2	2 2
	100.0	18.0	

IV. Kahala Local

1. Route Schedule

	Station	Arrival Time	Departure Time
	Waialae Beach Park		9:00
В	Kahala Mall Shopping Center	9:02	

2. Vehicle Requirement

Ope	rational Interval	Time of	Operation Hours	Minimum Number of Vehicles Required for 2-Way Traffic
a.	Peak hours:			
	(1) 6 min (design)			1
	(2) 11 min	10.4	1.9	1
b.	Offpeak hours:			_
	(1) 20 min	11.3	2.0	1
	(2) 33 min	21.6	3.9	1
	(3) 40 min	56.7	10.2	1
		100.0	18.0	

Therefore, 21 canal feeder boats are required to provide necessary services over the four routes which, when added to 10 percent or two boats as spares, gives a total of 23 boats in the fleet. As the demand increases, the operational time interval may be shortened. However, these 23 boats should be designed to operate at a peak 6-min interval for each route even though this peak interval could be as low as 11 min, similar to that for the bus. Nevertheless, a more rigorous analysis of the vehicle requirements is needed.

PRELIMINARY COST ESTIMATES

The preliminary cost estimate for the four inland waterway routes are shown in Table 9. The estimated grand total for the four routes is as follows:

	1972 Dollars	1980 Dollars
Hawaii Kai	11,315,000	11,549,000
Kahala	9,444,000	10,941,000
Ala Wai	42,658,000	45,620,000
Moanalua-Kapalama	53,234,000	57,190,000
TOTAL	116,651,000	125,300,000

SUMMARY AND TENTATIVE CONCLUSIONS

Four local route systems of the inland waterways subsystem for the Oceanic Express System were studied. Included were Hawaii Kai, Kahala, Ala Wai, and Moanalua-Kapalama-Nuuanu routes. A total of 23 canal feeder boats will be the minimum number required to serve the four local routes. The total capital cost for the feeder boats, terminals, stop stations, initial dredging, maintenance facility, reconstruction of bridges and roads, and land acquisition is estimated to be about \$23 million. Additional capital and replacement costs over a 30-year period will be \$7 million. During this 30-year period, the operating and maintenance costs will amount to \$95 million. The annual cost is estimated at about \$4 million. A summary of the cost analysis is shown in Table 10. Note that the cost of maintenance dredging at each waterway is a big expenditure item. As far as capital cost is concerned, reconstruction of the bridges and roads is the most expensive item, followed by initial dredging, land acquisition, and feeder boats.

The total waterway system will be 16 miles long and the average annual cost will be approximately \$271,000 per mile of waterway per year. A comparison of this annual cost with other feeder systems such as buses has yet to be made to determine the economic feasibility of the inland water subsystem.

As far as engineering feasibility is concerned, there are no major problems expected in operating such a marine feeder system. There will be

TABLE 9. PRELIMINARY COST ESTIMATES OF THE PROPOSED INLAND WATERWAYS FEEDER BOAT SYSTEM

							Subtotal	Total 1980
						*		
	TIAL CAPITAL COSTS:						· · · · · · · · · · · · · · · · · · ·	
1.	Feeder Boats:	122 -		٠.	1,380,000			
		(23 %	\$60,000)	<u> </u>			. \$ 1,380,000	
	Subtotal 1			,	1,300,000		. • .,,,,,,,,,,,	
2.	Terminals:		. 61 161		24 000			,
	Hawaii Kai Kahala	(8,200 sq ft (4,500 sq ft	(\$4.40 G	= \$ = \$	36,000 19,000			
	Kanara Ala Wai	(15,000 sq ft	e \$4.40)	- \$	66,000			
	Manoa-Palolo	(10,000 sq ft		= \$				
	Nuuanu Kapalama	(4,900 sq ft (4,900 sq ft		= \$ = \$				•
	Moanalua	(4,900 sq ft	e \$4,40)	- <u>\$</u>	22,000			
	Subtotal 2			\$	231,000 .		. \$ 231,000	
3.	Stations (shelters):				٠.			•
•	Hawaii Kai	(3	e \$5,000)	- \$	15,000			
	Kahā la	(1	e \$5,000)	- \$	5,000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		and the state of
	Ala Wai		e \$5,000)	- 5	25,000 40,000			
	Moanalua-Kapalama-Nuuanu	(0	e 45,000)	- 4	85,000 .		. \$ 85,000	
	Subtotal 3			,	05,000.		. • • • • • • • • • • • • • • • • • • •	
4.	Maintenance Facilities:							
		(56,0	000 sq ft)	= \$	200,000			
	Subtotal 4				200,000 .	• • • • • • • •	. \$ 200,000	·
5.	Initial Dredging (canál deepen	ing and widening	ıg) :					e vita
	Hawaii Kai		(none)					
	Kahala (Walalae Nui)	(100,000 cu (112,000 cu			700,000 784,000			
	Ala Wai Canal Manoa-Palolo	(25,000 cu			175,000			· ·
	Nuuanu	(22,000 cu	yd @ \$75)	- 5	154,000			
	Kapalama Moanalua	(70,000 cu (21,000 cu			490,000			
		(2.,,000 00		_	2,450,000 .		. \$ 2,450,000	
,	Subtotal 5	A		• • •	, 2, 1,50,500			
6.	Reconstruction of Bridges and	Approach Roads:				Angrosch Boadf		
			Brldg	<u>e</u>		Approach Road#		
	Hawali Kai		. 0			÷ 0		
	Kahala							
	Kahala Beach Park	(3,200 sq	ft @ \$30)	- :	96,000	\$ 16,000		
	Ala Wai Canal				-			1
	Ala Moána Boulevard	: (16,500 sq			495,000	\$ 48,000		en de la companya de
	Kalakaua Avenue	(13,500 sq			\$ 405,000	\$ 32,000 \$ 32,000		•
	McCully Street	(27,600 sq	Ft 6 330)		828,000	-		
			*		1,728,000	\$ 112,000		
	Manoa-Palolo							
	Date Street	(6,000 sq	ft @ \$30)	- :	\$ 180,000	\$ 32,000		' .
	Nuuanu	and the second second						
	Moderia						and the second	
	Nimitz	(25,500 sq		- :	\$ 765,000	\$ 128,000	en e	
	Nimitz King	(8,000 sq	ft @ \$30)	- :	\$ 240,000	\$ 64,000		
	Nimitz	(8,000 sq (5,250 sq		- :	\$ 240,000 \$ 158,000 \$ 120,000	\$ 64,000 \$ 32,000 \$ 32,000		
	Nimitz King Hotel	(8,000 sq (5,250 sq (4,000 sq	ft @ \$30) ft @ \$30)	- :	\$ 240,000 \$ 158,000	\$ 64,000 \$ 32,000		
	Nimitz King Hotel Beretanla	(8,000 sq (5,250 sq (4,000 sq	ft @ \$30) ft @ \$30) ft @ \$30)	- :	\$ 240,000 \$ 158,000 \$ 120,000	\$ 64,000 \$ 32,000 \$ 32,000		
	Nimitz King Hotel Beretanla	(8,000 sq (5,250 sq (4,000 sq	ft @ \$30) ft @ \$30) ft @ \$30)	- :	\$ 240,000 \$ 158,000 \$ 120,000 \$ 186,000	\$ 64,000 \$ 32,000 \$ 32,000 \$ 16,000		
	Nimitz King Hotel Beretania Kukui <u>Kapalama</u>	(8,000 sq (5,250 sq (4,000 sq (6,180 sq	ft @ \$30) ft @ \$30) ft @ \$30) ft @ \$30)	- 1	\$ 240,000 \$ 158,000 \$ 120,000 \$ 186,000 \$ 1,469,000 \$ 495,000	\$ 64,000 \$ 32,000 \$ 32,000 \$ 16,000 \$ 272,000		
	Nimitz King Hotel Beretanla Kukui <u>Kapalama</u> Nimitz Highway Nimitz R.R.	(8,000 sq (5,250 sq (4,000 sq (6,180 sq (16,500 sq (6,050 sq	ft @ \$30) ft @ \$30) ft @ \$30) ft @ \$30) ft @ \$30)		\$ 240,000 \$ 158,000 \$ 120,000 \$ 186,000 \$ 1,469,000 \$ 495,000 \$ 182,000	\$ 64,000 \$ 32,000 \$ 32,000 \$ 16,000 \$ 272,000 \$ 64,000 \$ 64,000		
	Nimitz King Hotel Beretanla Kukui <u>Kapalama</u> Nimitz Highway	(8,000 sq (5,250 sq (4,000 sq (6,180 sq (16,500 sq (6,050 sq	ft @ \$30) ft @ \$30) ft @ \$30) ft @ \$30)		\$ 240,000 \$ 158,000 \$ 120,000 \$ 186,000 \$ 1,469,000 \$ 495,000 \$ 495,000 \$ 182,000 \$ 264,000	\$ 64,000 \$ 32,000 \$ 16,000 \$ 272,000 \$ 64,000 \$ 64,000		
	Nimitz King Hotel Beretanla Kukui Kapalama Nimitz Highway Nimitz R.R. Dillingham	(8,000 sq (5,250 sq (4,000 sq (6,180 sq (16,500 sq (6,050 sq	ft @ \$30) ft @ \$30) ft @ \$30) ft @ \$30) ft @ \$30)		\$ 240,000 \$ 158,000 \$ 120,000 \$ 186,000 \$ 1,469,000 \$ 495,000 \$ 182,000	\$ 64,000 \$ 32,000 \$ 32,000 \$ 16,000 \$ 272,000 \$ 64,000 \$ 64,000		
	Nimitz King Hotel Beretanla Kukui Kapalama Nimitz Highway Nimitz R.R. Dillingham	(8,000 sq (5,250 sq (4,000 sq (6,180 sq (16,500 sq (6,050 sq	ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30)		\$ 240,000 \$ 158,000 \$ 120,000 \$ 186,000 \$ 1,469,000 \$ 495,000 \$ 182,000 \$ 264,000 \$ 941,000	\$ 64,000 \$ 32,000 \$ 16,000 \$ 272,000 \$ 64,000 \$ 64,000 \$ 192,000		
	Nimitz King Hotel Beretania Kukui Kapalama Nimitz Highway Nimitz R.R. Dillingham	(8,000 sq (5,250 sq (4,000 sq (6,180 sq (16,500 sq (6,050 sq	ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30)		\$ 240,000 \$ 158,000 \$ 120,000 \$ 186,000 \$ 1,469,000 \$ 182,000 \$ 182,000 \$ 264,000 \$ 341,000	\$ 64,000 \$ 32,000 \$ 32,000 \$ 16,000 \$ 272,000 \$ 64,000 \$ 64,000 \$ 192,000 \$ 64,000		
	Nimitz King Hotel Beretanla Kukui Kapalama Nimitz Highway Nimitz R.R. Dillingham	(8,000 sq (5,250 sq (4,000 sq (6,180 sq (16,500 sq (6,050 sq	ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30)		\$ 240,000 \$ 158,000 \$ 120,000 \$ 186,000 \$ 1,469,000 \$ 495,000 \$ 182,000 \$ 264,000 \$ 941,000	\$ 64,000 \$ 32,000 \$ 16,000 \$ 272,000 \$ 64,000 \$ 64,000 \$ 192,000		
	Nimitz King Hotel Beretanla Kukui <u>Kapalama</u> Nimitz Highway Nimitz R.R. Dillingham <u>Moanalua#</u> Nimitz	(8,000 sq (5,250 sq (4,000 sq (6,180 sq (16,500 sq (6,050 sq	ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30)		\$ 240,000 \$ 158,000 \$ 120,000 \$ 1,469,000 \$ 1,469,000 \$ 182,000 \$ 182,000 \$ 264,000 \$ 240,000 \$ 120,000	\$ 64,000 \$ 32,000 \$ 12,000 \$ 16,000 \$ 272,000 \$ 64,000 \$ 64,000 \$ 192,000 \$ 64,000 \$ 192,000		
	Nimitz King Hotel Beretania Kukui Kapalama Nimitz Highway Nimitz R.R. Dillingham Moanalua# Nimitz Mokumoa H-1	(8,000 sq (5,250 sq (4,000 sq (6,180 sq (16,500 sq (6,050 sq	ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30)		\$ 240,000 \$ 158,000 \$ 120,000 \$ 186,000 \$ 1,469,000 \$ 182,000 \$ 182,000 \$ 264,000 \$ 240,000 \$ 240,000 \$ 480,000 \$ 120,000	\$ 64,000 \$ 32,000 \$ 16,000 \$ 272,000 \$ 64,000 \$ 64,000 \$ 192,000 \$ 16,000 \$ 16,000 \$ 128,000		
	Nimitz King Hotel Beretania Kukui Kapalama Nimitz Highway Nimitz R.R. Dillingham Moanalua# Nimitz Mokumoa H-1	(8,000 sq (5,250 sq (4,000 sq (6,180 sq (16,500 sq (6,050 sq	ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30)		\$ 240,000 \$ 158,000 \$ 120,000 \$ 186,000 \$ 1,469,000 \$ 182,000 \$ 182,000 \$ 264,000 \$ 240,000 \$ 120,000 \$ 480,000 \$ 120,000	\$ 64,000 \$ 32,000 \$ 16,000 \$ 272,000 \$ 64,000 \$ 64,000 \$ 192,000 \$ 16,000 \$ 16,000 \$ 16,000	\$ 6,222,000	
7	Nimitz King Hotel Beretania Kukui Kapalama Nimitz Highway Nimitz R.R. Dillingham Moanalua# Nimitz Mokumoa H-1 Kikowaena	(8,000 sq (5,250 sq (4,000 sq (6,180 sq (16,500 sq (6,050 sq	ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30)		\$ 240,000 \$ 158,000 \$ 120,000 \$ 186,000 \$ 1,469,000 \$ 182,000 \$ 264,000 \$ 240,000 \$ 240,000 \$ 480,000 \$ 120,000 \$ 120,000 \$ 960,000	\$ 64,000 \$ 32,000 \$ 32,000 \$ 16,000 \$ 272,000 \$ 64,000 \$ 64,000 \$ 192,000 \$ 16,000 \$ 16,000 \$ 128,000 \$ 16,000 \$ 224,000	\$ 6,222,000	
7.	Nimitz King Hotel Beretania Kukui Kapalama Nimitz Highway Nimitz R.R. Dillingham Moanalua# Nimitz Mokumoa H-1 Kikowaena Subtotal 6 Rip-rap (canal):	(8,000 sq (5,250 sq (4,000 sq (6,180 sq (6,500 sq (6,050 sq (8,800 sq	ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30)		\$ 240,000 \$ 158,000 \$ 120,000 \$ 186,000 \$ 1,469,000 \$ 182,000 \$ 182,000 \$ 264,000 \$ 240,000 \$ 240,000 \$ 480,000 \$ 120,000 \$ 960,000 \$ 5,374,000)	\$ 64,000 \$ 32,000 \$ 32,000 \$ 16,000 \$ 272,000 \$ 64,000 \$ 64,000 \$ 192,000 \$ 16,000 \$ 16,000 \$ 128,000 \$ 16,000 \$ 224,000 \$ 848,000).	The state of the same	
7.	Nimitz King Hotel Beretania Kukui Kapalama Nimitz Highway Nimitz R.R. Dillingham Moanalua# Nimitz Mokumoa H-1 Kikowaena	(8,000 sq (5,250 sq (4,000 sq (6,180 sq (16,500 sq (6,050 sq (8,800 sq	ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30)		\$ 240,000 \$ 158,000 \$ 120,000 \$ 1,469,000 \$ 1,469,000 \$ 182,000 \$ 182,000 \$ 264,000 \$ 120,000 \$ 120,000 \$ 960,000 \$ 5,374,000).	\$ 64,000 \$ 32,000 \$ 32,000 \$ 16,000 \$ 272,000 \$ 64,000 \$ 64,000 \$ 192,000 \$ 16,000 \$ 16,000 \$ 128,000 \$ 16,000 \$ 224,000 \$ 848,000).		
7.	Nimitz King Hotel Beretanla Kukui Kapalama Nimitz Highway Nimitz R.R. Dillingham Moanalua# Nimitz Mokumoa H-1 Kikowaena Subtotal 6 Rip-rap (canal): Kahala (Vaialae Nui)	(8,000 sq (5,250 sq (4,000 sq (6,180 sq (16,500 sq (6,050 sq (8,800 sq	ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30) ft e \$30)		\$ 240,000 \$ 158,000 \$ 120,000 \$ 1,469,000 \$ 1,469,000 \$ 182,000 \$ 264,000 \$ 240,000 \$ 120,000 \$ 120,000 \$ 120,000 \$ 120,000 \$ 1374,000 \$ 5,374,000	\$ 64,000 \$ 32,000 \$ 32,000 \$ 16,000 \$ 272,000 \$ 64,000 \$ 64,000 \$ 192,000 \$ 16,000 \$ 16,000 \$ 128,000 \$ 16,000 \$ 224,000 \$ 848,000).	The state of the same	

^{*}Cost of Feeder Boat System if construction begins in 1972.
†Cost of Feeder Boat System if construction begins in 1980.
†Cost of Feeder Boat System if construction begins in 1980.
†Start feeder Boat System if construction begins in 1980.
†Start feeder Boat System if construction begins in 1980.
†Start feeder Boat System if construction begins in 1980.
†Start feeder Boat System if construction begins in 1972.

†The unit cost of \$1.5/cu yd by Daniel, Hunn, Johnson and Hendenhall of Hawaii (Lulegian & Associates), 1972, seems to be very low.

†Daniel, Hann, Johnson and Hendenhall of Hawaii (1972).

```
Total
                                                                                                   Subtotal
                                                                                                                                       1980+
  8. Barrier Wall (canal):
        Ala Wai Canal (Lewers Street
           to east end of canai,
mauka side)
                                          (60,000 ft # $4) = $
                                                                   240,000
           240,000 . . . . . . . . . . . . . $
                                                                                                      240,000
  9. Land Acquisition (terminals, new canal):
        Hawaii Kai (lease)
                                      (8.200 sq ft # $15) = $
                                                                   123,000
        Kahala (Waialae Nui Stream,
Golf Course land)
                                      (225,000 sq ft = $6) = $ 1,350,000
(4,500 sq ft = $6) = $ 27,000
           Canal
                                      (15,000 sq ft @ $20) = $
        Ala Wai Canal
                                      (10,000 sq ft @ $13) = $
                                                                   130,000
        Manoa-Palolo
                                       (4,900 sq ft @ $17) = $
                                                                    84,000
        Nuuanu
                                       (4.900 sq ft @ $15) = $
                                                                    74,000
        Kapa ) ama
                                       (4,900 sq ft @ $15) = §
                                                                    74,000
        Moanalua
           Subtotal 9
                                      10. Contingency:
                                         Contingency (15%) = $2,000,000
            II. Administration and Engineering:
                       Administration and Engineering (13%) = $ 1,280,000
            TOTAL INITIAL CAPITAL COSTS . . .
                                                                                                        . . . . $ 16,651,000 . . $ 23,300,000
 ADDITIONAL CAPITAL AND REPLACEMENT COSTS (over 30 year period):
                         TOTAL ADDITIONAL CAPITAL AND REPLACEMENT COSTS . .
                                                                                                                . $ 5.000.000 . . $ 7.000.000
  OPERATING AND MAINTENANCE COSTS:
  1. Maintenance Dredoing:
                                           (5,000 tons/yr)
(5,000 tons/yr)
(27,630 tons/yr)
                                                               (6,200 cu yd/yr)
(6,200 cu yd/yr)
(34,400 cu yd/yr)
         Hawaii Kai
         Kahala
Ala Wai
                                           (17,900 tons/yr)
(5,450 tons/yr)
(5,000 tons/yr)
                                                               (22,300 cu yd/yr)
(6,700 cu yd/yr)
         Nuuanu
         Kapalama
         Moana lua
                                                               (6,200 cu yd/yr)
                                           65.980 tons/yr
                                                                82,000 cu yd/yr
         Unit Cost
            1972 (82,000 cu yd/yr e $ 7) =
1980 (82,000 cu yd/yr e $10) =
1995 (82,000 cu yd/yr e $18) =
2010 (82,000 cu yd/yr e $22) =
                                                570,000/yr
820,000/yr
                                                                 1,150,000/yr (ave)
                                             1,480,000/yr
1,800,000/yr
                                                              $ 1,640,000/yr (ave)
            1972
                           {15 years} x $1,150,000/yr (ave) = $ 17,300,000 (15 years) (15 years) x $1,640,000/yr (ave) = $ 24,600,000 (15 years)
            1995
            . . . . . $ 41,900,000
  ). Other Indirect Operating Costs:
         General Office
                                                                   100,000/yr
         Terminals (5% of Terminals; Item A.2.)
Traffic (Feeder Boats)
                                                                   12,000/yr
210,000/yr
         Personnel to Operate Feeder Boats (23 # $15,000)
                                                                   345,000/yr
                                                                   667,000/yr
         Unit Cost
            1972
                                                667.000/vr
                                              935,000/yr
1,635,000/yr
2,860,000/yr
                                                                 1,285,000/yr (ave)
            1995
                                                                 2,247,500/yr (ave)
            2010
            1972
                           (15 years) x $1,285,000/yr (ave) = $ 19,300,000 (15 years) (15 years) x $2,247,500/yr (ave) = $ 33,800,000 (15 years)
            1995
            TOTAL OPERATING AND MAINTENANCE COSTS . . . . . . . . .
                                                                                                      . . . . . $ 95,000,000 . . $ 95,000,000
                                                                                        *Fuel & Oil
                      $2,730
                      $3,200
Engine Maintenance
Insurance
Hull Maintenance
                      $1,400
```

\$9,160 x 23 * \$210,000/yr of 2000 working hours/boat

1,380,000 231,000 35,000 2,450,000 6,22,000 401,000 240,000 2,162,000 2,300,900 5,000,000 41,900,000 13,371,000 6,651,300 23,300,300 116,651,000 3,888,000 248,000 271,000 Total 15.65 Kapalama-Wuwamu Poute 660,000 66,000 40,000 94,000 791,000 4,058,000 138,000 232,000 908,000 677,000 7,664,000 2,301,000 17,960,000 53,234,000 57,190,000 6,079,000 10,700,000 1,775,000 222,000 238,000 Meana Tua-8 486,000 110,000 25,000 67,000 959,000 2,052,000 150,000 240,000 430,000 676,000 469,000 5,658,000 1,700,000 17,600,000 17,700,000 42,658,000 45,620,000 1,422,000 4,513,000 351,000 Al**a Wa**i Route 7,940,000 SUMMARY OF COST ANALYSIS 4.05 50,000 19,000 5,000 10,000 112,000 113,000 359,000 124,000 1,377,000 2,379,000 864,000 1,210,000 3,170,000 2,531,000 9,444,000 2,396,000 4,030,000 315,000 365,000 525,000 608,000 Kahala Route 180,000 36,000 15,000 29,000 123,000 57,000 450,000 Hawaii Kai 383,000 135,000 3,170,000 377,000 385,000 126,000 128,000 630,000 11,315,000 **Route** 3.0 TABLE 10. Contingency (15%) Administration & Engineering (13%)* Additional Capital and Replacement Costs (30%) (30 years)
1972
1980 Operating and Maintenance Cost (30 years) 1. Maintenance Dredging 2. Other Indirect Cost ROUTES 1972 (30 years) 1980 (30 years) 1972 (per year) 1980 (per year) Initial Dredging Bridges and Roads Rip Rap Barrier Wall Land Acquisition Length of Materways (miles) TOTAL Capital Cost, 1980 TOTAL Capital Cost, 1972 1972 (per mile per year) 1980 (per mile per year) (link system) <u>Capital Cost</u> 1. Feeder Boats Maintenance [ermina]s Stations COST ITEM GRAND TOTAL Annual Cost SU8-TOTAL ~ 00 0 ⋖. <u>.</u> ن

*Excludes Boat and Land

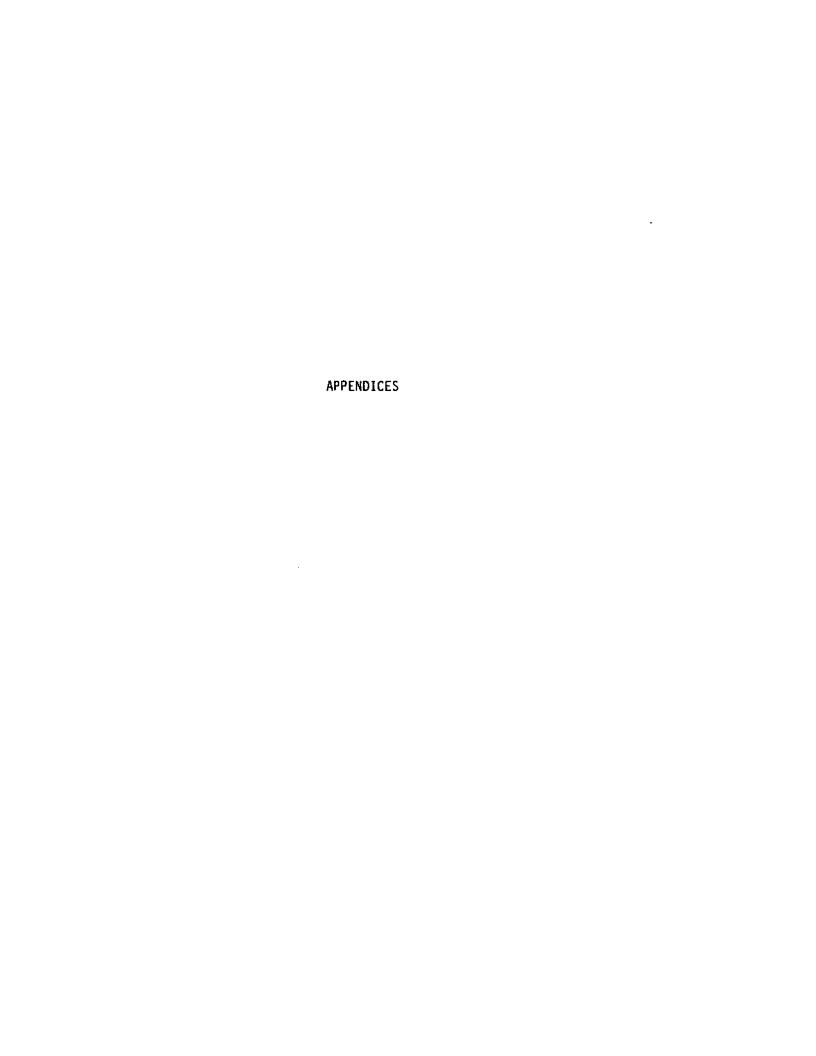
no major widening of the four existing channels except for the Kahala route. The channels will be adequate in providing two-way traffic for feeder boats having 12-ft beams; however, all channels must be deepened to a minimum water depth of 6 ft in order to provide necessary passage for feeder boats of 3-ft draft. The reconstruction of the bridges and approach roads will cause some adverse effects including temporary interruption of local traffic or environmental impact on local conditions.

It is tentatively concluded that the construction, operation, and maintenance of the four selected waterways seem to be technically feasible, but their economic feasibility cannot be determined until the entire Oceanic Express System is thoroughly analyzed.

The Ala Wai route is considered to have the best potential for being converted into a waterway for navigational purposes. The Nuuanu Channel is relatively short but will involve reconstruction of five bridges; therefore, a more careful study is required to determine its feasibility as a waterway.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the initiation and consultations of Dr. John P. Craven, Dean of Marine Programs and State Marine Affairs Coordinator and Dr. Jack R. Davidson, Director of Sea Grant College Program and Associate Dean of Marine Programs, University of Hawaii.


Special thanks are due to the technical staff of both the U.S. Geological Survey and the U.S. Soil Conservation Service offices in Honolulu for their valuable assistance.

Acknowledgment is given to Mr. Arpad J. St. George, Senior Technician and Mr. Takeo Kikuchi, Graduate Assistant for their contributions in the field measurement program.

The authors wish to thank Mr. J.T. O'Brien, Director, J.K.K. Look Laboratory of Oceanographic Engineering for reviewing the manuscript.

REFERENCES CITED

- Blumenstock, D.1. 1961. Climates of the States Hawaii. Climatography of the United States No. 60-51, U.S. National Weather Service, NOAA.
- Craven, J.P. 1972. Lecture on Oceanic Express System in the Mass Transit Versus Land Use Seminar (4-6 January 1972). Sponsored by Center for Engineering Research, University of Hawaii.
- Daniel, Mann, Johnson & Mendenhall of Hawaii. 1972. Draft Environmental Impact Statement--Honolulu Rapid Transit Preliminary Engineering Evaluation Program. Prepared for the Mass Transit Division, Department of Traffic, City and County of Honolulu, Hawaii. (Three volumes)
- Dillingham Corporation. 1972. Monthly Calendar Showing Daily Tide Variations.
- Gonzalez, F.I. 1971. Descriptive Study of the Physcial Oceanography of the Ala Wai Canal. HIG-71-7. Hawaii Institute of Geophysics, University of Hawaii. (Technical Report No. 26. Hawaii Institute of Marine Biology, University of Hawaii.
- Jones, B.L., R.H. Nakahara, and S.S.W. Chinn. 1971. Reconnaissance Study of Sediment Transported by Streams, Island of Oahu. Circular C33. U.S. Geological Survey, Honolulu, Hawaii.
- Nicinski, S.A., T. Kikuchi, and T.T. Lee. A Pilot Study of Marine Alternatives for Mass Transit in Hawaii--Inland Waterways Subsystem. (In preparation)
- Proudman, J. 1953. Dynamical Oceanography. New York: John Wiley & Sons, Inc.
- U.S. Geological Survey. 1969. Water Resources Data for Hawaii and Other Pacific Areas--Part 1. Surface Water Records, Part 2. Water Quality Records. Honolulu, Hawaii.
- U.S. Geological Survey. 1970. Water Resources Data for Hawaii and Other Pacific Areas--Part 1. Surface Water Records, Part 2. Water Quality Records. Honolulu, Hawaii.
- U.S. National Weather Service. 1962. Rainfall--Frequency Atlas of the Hawaiian Islands--for Areas to 200 Square Miles, Duration to 24 Hours and Return Periods from 1 to 100 Years. Technical Paper TP-43. National Weather Service, NOAA, U.S. Department of Commerce, Washington, D.C.
- U.S. Soil Conservation Service. 1972. SCS National Engineering Handbook, Section 4, Hydrology. Revised August 1972. (First Edition published in November 1954.)

Appendix A. General Procedure For Preparing Runoff Hydrographs at Ala Wai Canal

GENERAL PROCEDURE FOR PREPARING RUNOFF HYDROGRAPHS AT ALA WAI CANAL

A synthesis method was used to compute the runoff hydrographs for design flood and normal flood conditions based on rainfall and watershed characteristics in the area of interest, i.e., Manoa-Palolo drainage area. Detailed procedures are described by the U.S. Soil Conservation Service (1972). Since watersheds in Hawaii are mostly small, there will be no real adjustment of rainfall amount to be used for hydrograph computations. Also, the time of concentration is very short--from 0.6 to 1.0 hours, which is much less than six hours--therefore, there will also be no duration adjustment of rainfall amount. Further, since the climatic index. C_i [C_i = $(100 \ P_a)/(T_a)^2$ where C_i is the climatic index, P_a is the average precipitation in inches, T_a is the average annual temperature in °F] in the Manoa-Palolo drainage area is about 2.5 which is greater than 1; therefore, there will be no channel loss to be accounted for computing the direct runoff from rainfall. The average annual precipitation in the area is 150 inches per year and the average annual temperature is $78^{\circ}F$.

The runoff is determined as follows:

- Determine the runoff curve number (CN). The runoff curve number is related to the land use characteristics, soil classification, and antecedent moisture condition in the drainage area in question. The land use classes are determined from the "Forest Map" prepared by the U.S. Forest Service (Figure A1). Code numbers are given showing land use class, forest type, and density/stand size class in each subdivided area. Based on the Forest Map and its legend, a description of the forest type of the Manoa-Palolo watershed is listed in Table Al. The soil description of the Manoa-Palolo area is obtained from the soil map prepared by the U.S. Soil Conservation Service, Hawaii. Using the map and its legend, the soil description for each sub-area was obtained as listed in Table A2. With the information on soil classification and land use characteristics, the runoff curve number for each sub-area can be determined. Following this, a weighted runoff curve number can be easily determined. In the case of the Manoa-Palolo Drainage Basin, the runoff curve number is 84 as shown in Table A2. Similarly, the CN for other drainage areas of proposed inland waterways can be determined accordingly. Note that the CN is for antecedent moisture condition II (AMC-II).
- 2. Determine the time of concentration, T_C . The time of concentration may be determined by the following formula:

$$T_{\rm c} = \left(\frac{11.9 \ L^3}{\rm H}\right)^{0.385}$$

where T_C is the time of concentration in hours,
L is the length of the watershed in miles, and
H is the watershed height in feet.

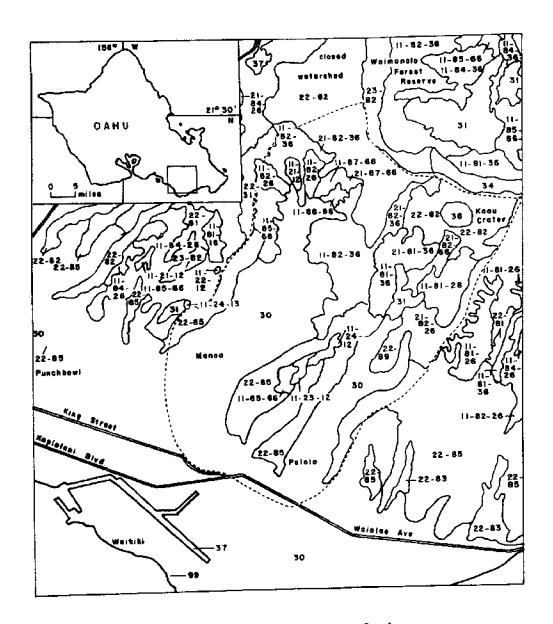


Figure Al. Manoa-Palolo Drainage Basin.

(Forest Map, U.S. Forest Service)

TABLE A1. FOREST TYPE OF MANOA-PALOLO WATERSHED

Land Use (Forest Map) Code	Land Use Class	Forest Type	Density/Stand Size Class	Area (sq mi)	
22~85	Non-Commercial	Haole-kon-Guava- Lantana Type (shrub types)	- ند نو	0.26 0.70 0.25	
11-85-66	Commercial Forest	Haole-koa-Guava- Lantana Type (shrub types)	Nonstocked	0.08 0.19 0.05	
11-82-26	Commerical Forest	Chia-koa Type	Semidense, Nonstacked	0.08 0.09	
) t-82-36	Commercial Forest	Ohia-koa Type	Open, Nonstocked Open, Nonstocked	0.21 0.75	
11-82-36/ 21-82-36	Commercial Forest and Reserved Commercial	Ohia-koa Type	·	0.04	
11-21-12	Commercial Forest	Eucalyptus, planted	Dense, heavy saw timber stand		Forest 5,48 sq mi
22-82	Non-Commercia!	Ohia-koa Type		0.78 0.66	60%
11-87-66/ 21-87-66	Commercial and Reserved Commercial	Herbaceous Type (grass, herbs, etc.)	Nonstocked	0.09	
11-88-66	Commercial	Pandana, Sisal, Palms or Bamboo	Nonstocked	_ •	
11-23-12/	Commercial	Hardwoods (brushbox) Conifer Species	Dense, heavy saw timber stand	0.09	
11-24-12	Commercial and Reserved Commercial	Kukui Trees	Open, Nonstocked	0.34	
21-81-36	Reserved Commercial	Ohia-koa Type	Open, Nonstocked	0.13	
21-82-36 71-82-26	Reserved Commercial	Ohia-koa Type	Semidense, Non- stocked	0.35	
11-81-26	Commercial	Kukui Trees	Semidense, Non≃ stocked	0.27	
				0.08	
36	Marsh Land			0.10	Honolulu 3.87 sq ™
31	Cultivated and Inten- sively Pastured Area			3.69	40%
30	Housing (Urban- Industrial Areas)	±		9.35	

TABLE A2. SOIL TYPE OF MANOA-PALOLO WATERSHED

)	Area (sq ml)	Soll Description	Soil Classi- fication A B C D	for AMC-11 Runoff Condition CN	CN × A Weighted CI
	0.26 0.70 0.25 0.08	rRK Rock Land rRK Rock Land rRK Rock Land rRK Rock Land	X X X X	79 Woods, fair 79 Woods, fair 79 Woods, fair 79 Woods, fair	10 ²
	0.19	LOF Lolekaa Sility	x	79 Woods, fair	15
	0.05	Clay, 40~70% stope H ₀ 0/PID Manana/Polmoa Silty Ctay, 5~20% Slope	x	73 Woods, fair	3.6
	0.08	LOF Lolekan Silty Clay, 40-70% slope	X	79 Woods, fair	6.3
	0.09	LOC Lolekaa Slity Clay, 8-15% slope	x	60 Woods, fair	9.4
	0.21	TAE	x	45 Woods, poor	9.5
	0.75	LOF Loleksa and rRK Silty Clay and Rock Land, 40-70% slope	x	83 Words, poor	62.3
	0.04	LOC Lolekaa Silty Clay, 8-15% slope	x	55 Woods, good	2.2
	0.78	rRK Rock Land rRK Rock Land	X X	79 Woods, fair 79 Woods, fair	61.6 52.1
	0.66 0.09	LOF Lolekaa Silty Clay, 40-70% slope	x	84 Pasture, fair	7.5
		rRK Rock Land	x	83 Woods, poor	4.2
	0.05	MpD Manama Silty Clay, 15-25% slope	x	74 Pasture, good	6.7
	0.34	rRK Rock Land	×	B3 Woods, poor	29.2
	0.13	FRK Rock Land	x	79 Woods, falr	38.0
	0.35 0.27	rRK Rock Land	Ж		29.2
	0.27	rAAE Alakai Mucky Peat, 0-30% slope	x	68 Pasture, poor	12.2
	0.10	LOB Lolekaa Silty Clay, 3-8% slope	x	92 Hard Surface	339.0
	3.69	TCC, MIA Tantalus Clay, Makiki Clay Loam, 8-15% slope LaA LUA Lahaina Silty Clay, Lualua- lei Clay, 0-3% slop	e (paveu) ^		704.0
			786.0 9.35 sq m	1; = 84.1	786.0 Say B4

Using the nomograph (Figure A2), the $T_{\rm C}$ for the Manoa-Palolo watershed (L = 20,000 ft; H = 2,435 ft) is approximately 0.6. From consultations with the U.S. Soil Conservation Service (Whiting, 1972), $T_{\rm C}$ = 1 hour was selected for the hydrograph computations.

- 5. Obtain the mean monthly rainfall at Manoa-Palolo watershed from "Climates of the States - Hawaii," by Blumenstock (1961) as shown in Figure A3 and Table A3. However, rainfall duration was not given by Blumenstock. Fortunately, such information can be estimated from the "Rainfall-Frequency Atlas of the Hawaiian Islands," Technical Paper No. 43, U.S. National Weather Service (1962). Accordingly, a rainfall-duration curve was prepared for a one-year storm duration for the Manoa-Palolo watershed (Figure A4). Similar curves for other areas can be developed from the atlas. Following this, the frequency of the storm must be determined. It is assumed that 50 percent of the monthly rainfalls would generate significant direct runoff. Then, the U.S. Geological Survey's surface water records for the 1969 water year at the Manoa-Palolo gaging stations were used to determine the number of floods which would contribute 50 percent to the total discharge in each month. With this information, the average rainfall can be determined as shown in Table A3. The duration for each rainfall can be determined from Figure A4. It must be noted that this method is preliminary pending further study but it is considered reasonable for this study. Of course, one may dispute that the water year may not be representative. At least, it is the most recent information currently available to the authors. To study the effect of the design storms, the four conditions in Table A4 were selected for study.
- Determine the direct runoff Q from the rainfall information and runoff curve number as known. (Use Figures A5 and A6.)
- Compute hydrograph using the worksheet of the U.S. Soil Conservation Service:
 - a. Compute the initial value of T_p = 0.7 T_c where T_p is time to peak discharge.
 - b. Determine the duration of excess rainfall, T_0 , for given rainfall and runoff curve number (Figure A7 and Tables A5 and A6).
 - c. Determine the hydrograph family from known rainfall and CN (Figure A8).
 - d. Compute the T_0/T_p ratio.
 - e. Select a revised T_0/T_p ratio which are shown in the dimensionless hydrograph tabulations by U.S. Soil Conservation Service (1972)--their Table 21.16 and Table 21.17.
 - f. Compute revised $T_p = (T_0)/(T_0/T_p)$ rev.

- g. Compute $q_p = (484 \text{ A})/\text{rev}$. T_p .
- h. Compute $Q_{ab} = (Q)(q_p)$.
- i. Compute the times for which hydrograph rates will be computed.

$$t = (t/T_p) (rev. T_p)$$

 t/T_p is given in Table 21.17 (SCS, 1972)

j. Compute the hydrograph rates $q=(q_c/q_p)Qq_p$ in which q_c/q_p may be obtained from Table 21.17 for the selected hydrograph family.

Based on the procedure described above, the results of hydrograph computations are shown in Tables A7 to A18. They are also plotted in Figures 2a to 2e.

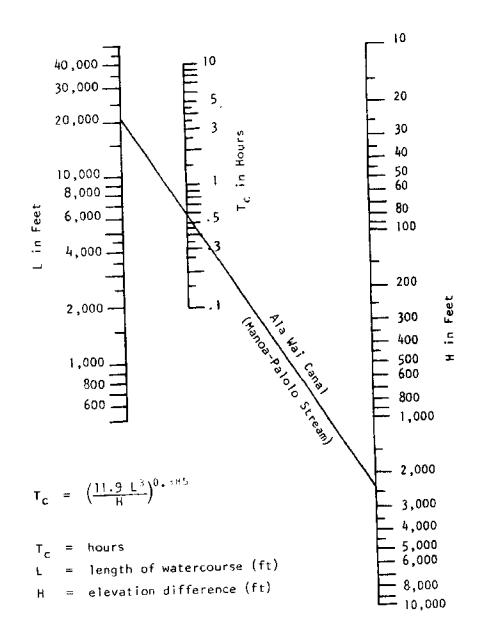


Figure A2. Nomograph for determination of time of concentration.

Figure A3. Mean monthly rainfall at Manoa-Palolo Stream watershed.

(Based on the averages of mean monthly rainfalls for Stations #718 Palolo Valley and #716 Manoa Tunnel 2 for period 1931 through 1955, Blumenstock, 1961.)

TABLE A3. MEAN PRECIPITATION (INCHES) ESTIMATED FOR EACH STORM DURING EACH MONTH

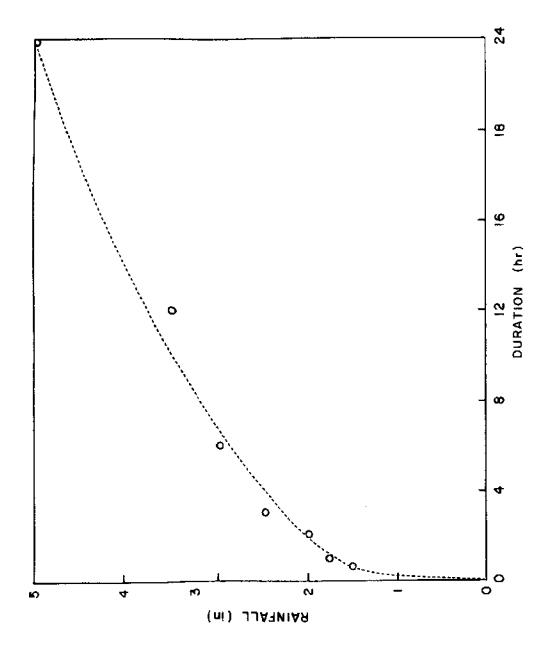
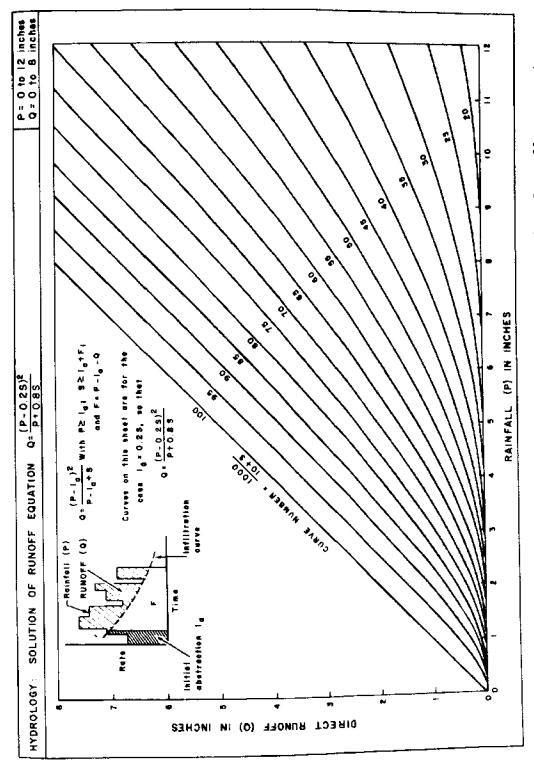
	Manoa Tunnel #716 (Eleva- tion 605 ft)	Palolo Valley #718	Ave.	50% Rain- fall	Signif- icant* (days)	Rain- fall (in)	Dura- tion** (hr)
Annua I	138.2	135.6	-			•	<u> </u>
Jan	10.9	11.1	11.0	5.5	4	1.4	1/2
Feb	11.1	11.6	11.4	5.7	4	1.4	1/2
Mar	13.2	12.9	13.1	6.6	2	3.3	6
Apr	12 .8	12.6	12.7	6.4	5	1.3	1/2
May	12.6	11.8	12.2	6.1	8	8.0	1/2
Jun	9.7	9.1	9.4	4.7	4	1.2	1/2
Jul	12.1	10.9	11.5	5.8	6	1.0	1/2
Aug	12.5	11.2	11.9	6.0	11	0.5	1/2
Sep	9.4	8.8	9.1	4.6	2	2.3	3
0ct	10.4	10.9	10.7	5.4	3	1.8	2
Nov	10.8	11.3	11.1	5.6	1	5.6	24
Dec	12.9	13.6	13.3	6.7	3	2.2	3

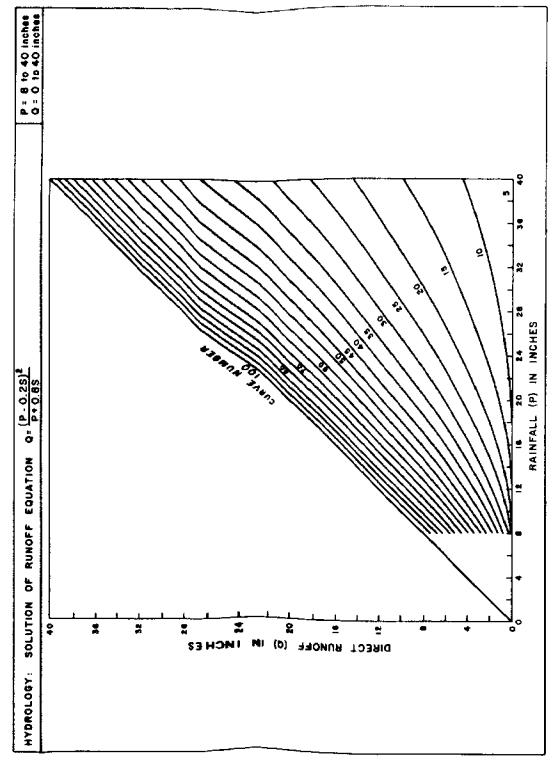
^{*}Based on the 'Water Resources Data for Hawaii and Other Pacific Areas, 1969".

TABLE A4. CONDITIONS OF DESIGN STORMS

	Frequency	Duration (hr)	Rainfall (in)
(1)	100-year (T _c = 1 hr)	6	10
(2)	100-year (T _c = 1 hr)	1	6
(3)	100-year (T _c = 1 hr)	1	4
(4)	100-year (T _c = 0.6 hr)	1	4

^{**}Obtained from Figure A4 corresponding to the average rainfall estimated.


Figure A4. Manoa-Palolo Stream rainfall-frequency-duration for one year storm.

(Based on TP-43, Weather Bureau.)

Relation between direct runoff and rainfall as a function of runoff curve number. Figure A5.

(U.S. Soil Conservation Service, 1972)

Relation between direct runoff and rainfall as a function of runoff curve number. Figure A6.

(U.S. Soil Conservation Service, 1972)

44

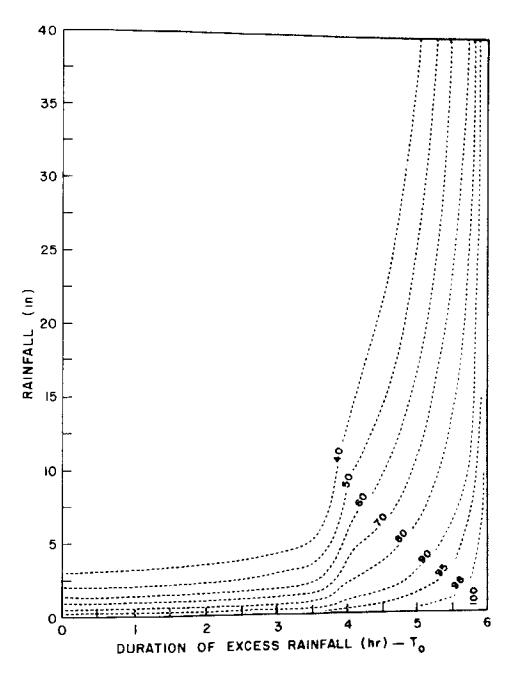


Figure A7. Duration of excess rainfall as a function of rainfall runoff curve number.

TABLE A5. RAINFALL PRIOR TO EXCESS RAINFALL (P*) VS RUNOFF CURVE NUMBER (CN)

CN	P* (in)	CN	P* (in)	CN	P* (in)	CN	p* (in)	CN	p* (in)
100	0.00	86	0.33	72	0.78	58	1.45	44	2.54
99	.02	85	. 35	71	. 82	57	1.51	43	2.64
98	.04	84	. 38	70	. 86	56	1.57	42	2.76
97	.06	83	.41	69	.90	55	1.64	41	2.88
96	.08	82	. 44	68	.94	54	1.70	40	3.00
95	.11	81	.47	67	.98	53	1.77	39	3.12
94	.13	- 80	.50	6 6	1.03	52	1.85	38	3.26
93	.15	79	.53	65	1.08	51	1.92	37	3.40
92	.17	78	.56	64	1.12	50	2.00	36	3.56
91	. 20	77	.60	63	1.17	49	2.08	35	3.72
90	.22	76	.63	62	1.23	48	2.16	34	3.8
89	.25	75	.67	61	1.28	~47	2.26	33	4.0
88	.27	74	. 70	60	1.33	46	2.34	32	4.2
87	. 30	73	. 74	59	1.39	45	2.44	31	4.4

(U.S. Soil Conservation Service, 1972)

Example: For Runoff Curve Number (CN) of 84 for the Manoa-Palolo Stream, the Rainfall prior the Excess Rainfall is 0.38. The Rainfall Ratio P*/P can be then computed for use in Table A6.

TABLE A6. RAINFALL RATIO P*/P VS TIME RATIO (To/STORM DURATION)

Rain- fall Ratio	Time Ratio	Rain- fall Ratio	Time Ratio	Rain- fall Ratio	Time Ratio	Rain- fall Ratio	Time Ratio
0.000	1.000	0.070	0.852	0.140	0.746	0.210	0.684
0.002	0.995	0.072	0.848	0.142	0.744	0.212	0.682
0.004	0.990	0.074	0.844	0.144	0.742	0.214	0.680
0.006	0.985	0.076	0.841	0.146	0.740	0.216	0.679
0.008	0.981	0.078	0.837	0.148	0.739	0.218	0.677
0.010	0.976	0.080	0.833	0.150	0.737	0.220	0.675
0.012	0.971	0.082	0.830	0.152	0.735	0.222	0.673
0.014	0.967	0.084	0.827	0.154	0.733	0.224	0.672
0.016	0.962	0.086	0.824	0.156	0.732	0.226	0.670
0.018	0.957	0.088	0.821	0.158	0.730	0.228	0.668
0.020 0.022 0.024 0.026 0.028	0.952 0.948 0.943 0.938 0.933	0.090 0.092 0.094 0.096 0.098	0.818 0.815 0.812 0.809 0.806	0.160 0.162 0.164 0.166 0.168	0.728 0.726 0.724 0.723 0.721	0.230 0.232 0.234 0.236 0.238	0.667 0.666 0.666 0.665
0.030 0.032 0.034 0.036 0.038	0.929 0.924 0.919 0.915 0.911	0.100 0.102 0.104 0.106 0.108	0.803 0.800 0.797 0.794 0.791	0.170 0.172 0.174 0.176 0.178	0.719 0.717 0.716 0.714 0.712	0.240 (Change tabula increm	tion
0.040	0.908	0.110	0.788	0.180	0.710	0.250	0.662
0.042	0.904	0.112	0.785	0.182	0.709	0.300	0.651
0.044	0.900	0.114	0.782	0.184	0.707	0.350	0.640
0.046	0.896	0.116	0.779	0.186	0.705	0.400	0.628
0.048	0.893	0.118	0.776	0.188	0.703	0.450	0.617
0.050	0.889	0.120	0.773	0.190	0.702	0.500	0.606
0.052	0.885	0.122	0.770	0.192	0.700	0.550	0.595
0.054	0.882	0.124	0.767	0.194	0.698	0.600	0.583
0.056	0.878	0.126	0.764	0.196	0.696	0.650	0.542
0.058	0.874	0.128	0.761	0.198	0.695	0.700	0.500
0.060	0.870	0.130	0.758	0.200	0.693	0.750	0.447
0.062	0.367	0.132	0.755	0.202	0.691	0.800	0.386
0.064	0.863	0.134	0.751	0.204	0.689	0.850	0.310
0.066	0.859	0.136	0.749	0.206	0.687	0.900	0.220
0.068	0.856	0.138	0.747	0.208	0.686	0.950	0.116

(U.S. Soil Conservation Service, 1972)

 $T_O = (Time Rate)$ (Storm Duration)

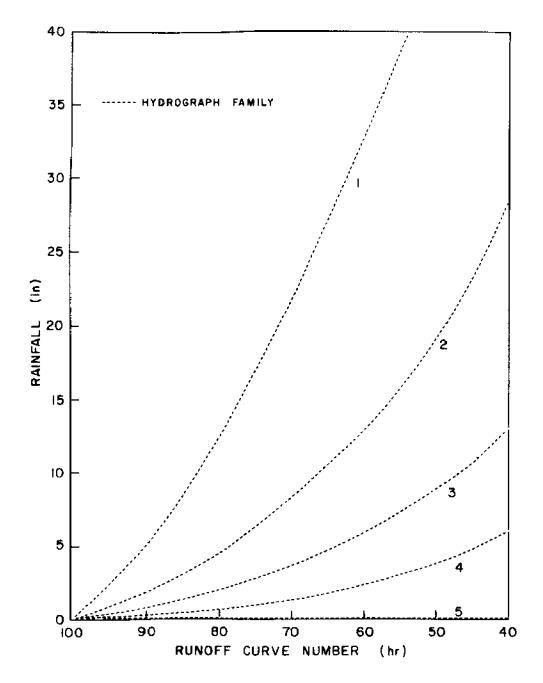


Figure A8. Hydrograph family number as a function of rainfall and runoff curve number.

TABLE A7. HYDROGRAPH COMPUTATION FOR JANUARY, FEBRUARY, APRIL. AND JUNE

\$05-ENG 319 Rev. 1-F0 File Code FNG 13-14

U.S. CHPARTMENT OF AGRICULTURE
U.S. CHPARTMENT OF AGRICULTURE

HYDROGRAPH COMPL	ITATIO	DATE COMP CHEC	UTED BY	
	T	LUI/TolRey To	a lac/apHQHapi	Q, (Q), (Q)(
WATERSHED OR PROJECT Manoa-Patolo Stream		1	9	· · · · · —
		HOURS	CFS	INCHES
STAIL Hawaii	"	0	0	0
	7	0.092	241	
STRUCTURE SITE OR SUBARFA ALA Wal Canal	3	0.185	1,060	
	4	0.287	2,360	
DR. AREA 9-35 50. MI STRUCTURE CLASS	5	0.370	3,550	
	F.	0.462	3,990	-
T HR. STORM DURATION U-5 HR.	1	0.555	3,620	
POINT RAINFALL 1-4 IN.	8	0.646	2,760	
ADHISTED RAINEALL	٩	0.740	1,890	
	10	0.831	1,250	
AREAL FACTOR IN IN IN	11	0.925	835	
PURATION FACTOR IN	17	1.017	566	
RUNDEF CURVE NO. 84	n	1.110	380	
HUMON CORAL NO.	14	1.200	250	
Q <u>0,35</u> IN.	15	1.290	170	
HYDROGRAPH FAMILY NO4	16	1.380	120	
TTURUGRATH FAMILT NU	17	1.480	80	
0 70 up (0 7 3)	IA.	1.570	50	
COMPUTED T 0.70 HR. (0.7 Tc)	19	1.660	30	
- 0.33 vo	20	1.760	14	
T ₀ HR.	21	1.845	5	
(T (T)	22	1.940	0	
(T _a / T _p) COMPUTED	23		···	
COMPOSED	24			
neween t 0 33	25			
REVISED T _p	76			
$q_p = \frac{484A}{REV. T_p} = \frac{13.700}{CFS}$ CFS.	27	<u> </u>		
REV. T	78			
(QYq _p) = 4,800 CFS.	29			<u> </u>
	30		£stimated	Number
KCOLUMN) == (1/ T) REV. T aCCOLUMN) == (0 / 0 XQX0)	31	Month ——	of Occurr	
ррстр	32	Jan	4	
Q(COLUMN) = $(Q_{\parallel}/Q)Q$ Q _{peak} = 3.990 cfs	13	Feb	4 5	
$Q(COLUMN) = (Q_1/Q)Q$ $Q_{peak} = 3.990 \text{ cfs}$	34	Apr Jun	ú	

TABLE A8. HYDROGRAPH COMPUTATION FOR MARCH

SCS-ENG-119 Rev. 1-70 File Code FNG-13-14 U S DEPARTMENT OF AGRICULTURE SCHL CONSERVATION SERVICE

HYDROGRAPH COMPUT	FATION	DATE COMPL CHEC	ITED BY	
	Ţ	II/T _p iRev. T _p	а (ас/ариФнар	0, 10,/010
WATERSHED DR PROJECT Manua-Palolo Stream	ļ		9	Q
MATERIANS II DK SHELLECT		HOURS	CES	INCHES
STATE Hawaii	1	0	0	0
STATE Hawa()	7	0.265	10	
STRUCTURE SITE OR SUBAREA ALB Wal Canal	3	0.795		
STRUCTURE STIE ON SUBMITER	(1.060	380	
DR. AREA . 9-35. SQ. MI. STRUCTURE CLASS	5	1.320		
pri anti 1 2/ 2/2 - 30, mi. Stritterene centi - 12 - 20-	- 6	1.590		
T I.O HR, STORM DIRATION 6 HR.	j	1.850		
· j	8	2.220	4,710	
POINT RAINFALL	9	2.390	4,350	
ADMISTED RAINEALL	10	2.650	3,720	
AREAL FACTOR	n l		3,140	
DURATION FACTOR IN	1/	3.180	ſ	
e.	в	3.450	2,270	
RUNOLE CHRVE NO. 84	ie i	3.720	1,960	
Q 1.75 IN	15	3.720	1,960	
,	lin .	3.980	Ī I	
HYDROGRAPH FAMILY NO	17	4.240	1,540	
0.10 (0.3.7.)	IR.	4.510	1,410	
COMPUTED T _p $= 0.70$ HR. $(0.7 T_c)$	19	4.780	1,310	
6.73	20	5.040	1,150	
T ₀ 4.61 HR.	21	5.300	860	
17 / T h	22	5.570	560	
(T _B / T _B) COMPUTED 6.67 USED 6	23	6.100	200	l
COM ULED	24	6.370	120	
DELISED 1 0.78	75	6.530	80	
REVISED 1 D. 78	75	6.900	50	
9 = 484A . 5,800 CFS.	77	7.150	40	
THEY. TO	28	7.420	30	
(QYa _n) = 10,650 CFS.	29	7.700	20	
٠ پ	30	7.950	10	
$\text{RECOLUMN} = (1 / T_{p}) \text{REV} T_{p} \qquad \text{RECOLUMN} = (q_{e} / q_{p}) \text{QY}(q_{p}) .$	31	8.220	0	
	32		Estimated	Number
Q(COLUMN) = $(Q_1/Q)Q$ $Q_{peak} = 4.710 \text{ cfs}$	13	Month ——	of Occurr	ence
, hear	34	Mar	2	

TABLE A9. HYDROGRAPH COMPUTATION FOR MAY, JULY, AND AUGUST

SCS-ENG-319 Rev. 1-70 File Code ENG-13-14

U & DEPARTMENT OF AGRICULTURE BOX CONSERVATION SERVICE

HYDROGRAPH COMPU	HYDROGRAPH COMPUTATION			
	T	I:(I/T _p)#ev. 1 _p	a (a _c /a _p HQKa _p)	Q ₁ (Q ₁ /Q)Q
WATERSHED OR PROJECT Manoa-Palolo Stream			9	0
		29UOH	CFS	INCHES
STATE Hawali	ī	0	0 1	0
	2	0.087	75	
STRUCTURE SITE OR SUBAREA Ala Wai Canal	3	0.174	320	
	1	0.260	716	
DR. AREA 9-35 SQ. MI. STRUCTURE CLASS	5	0.347	1,080	
	6	0.433	1,210	
TNOHR. STORM DURATIONO.5HR.	1	0.520	1,100	
•	8	0.607	840	
POINT RAINFALL 0.8 IN.	9	0.694	570	
ADJUSTED RAINFALL:	10	0.780	380	
AREAL: FACTOR1 IN0.8	11	0.867	250	
DURATION: FACTOR IN	17	0.955	170	ļ,
RJ	13	1.040	115	
RUNOFF CURVE NO84	14	1.130	77	
QO.1H,	15	1.215	52	ļ <u></u>
	16	1.300	37	
HYDROGRAPH FAMILY NO4	17	1.390	25	
0.70 (0.1.7.)	18	1.476	16	
COMPUTED T _p 0.70 MR. (0.7 T _C)	19	1.560	9	
	70	1.650	4	<u> </u>
T ₀ HR.	71	1.740	2	<u> </u>
	22	1.820	0	-
(T _a / T _p): COMPUTED 0.44 USED 1	23	T		ļ
COMPUTED	74			
0.21	75		<u> </u>	
REVISED T _p 0.31	26			.
14.600 AFA	27			ļ
$\mathbf{q}_{\mathbf{p}} = \frac{484A}{REV. T_{\mathbf{p}}} = \frac{14,600}{100} CFS.$	28		<u> </u>	<u> </u>
	29			ļ
$(Q\chi q_p) = \underbrace{1,460}_{CFS}$	30		<u> </u>	
$\kappa(\text{COLUMN}) = (t / T_{\perp}) \text{ REV. } T_{\perp} \qquad \text{ of COLUMN}) = (q_{\text{c}} / q_{\text{p}})^{\text{CQV}} q_{\text{p}}^{\text{D}}$	31	Month	Estimate of Occu	d Number rrence
$\kappa(COLUMN) = (1/T_p) REV. T_p$ $\alpha(COLUMN) = (1/C_p) \kappa_{AVA}$	32	1		В
$Q(COLUMN) = (Q_{\parallel}/Q)Q \qquad \qquad Q_{peak} = 1,210 \text{ cfs}$	33	- May Jul		6
$Q(COLUMN) = (Q_q/Q)Q$ $Q_{peak} = 1,210 cfs$	34	Aug	1	l

TABLE A10. HYDROGRAPH COMPUTATION FOR SEPTEMBER

SCS-ENG-319 Rev. 1-70 Fite Code ENG-13-14" II S DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

HYDROGRAPH COMPU	PUTATION COMPUTED BY				
	ļ	i≐(i/T _p)Rev. 1	ρ ατια _σ /αρχΩκα _ρ)	$Q_{1}:\{Q_{1}/Q)Q$	
WATERSHED OR PROJECT Manoa-Paloto Stream		ı	q	0	
The state of the s		HOHRS	CE2	INCHES	
STAIFHawaii	1	0 ,	0	0	
	2	0.248	24		
STRUCTURE SITE OR SUBAREA Ala Wai Canal	3	0.496	520		
	4	0.745	1,705		
DR. AREA 9-35 SQ. MI. STRUCTURE CLASS	5	0.991	2,880		
-	Б	1.240	3,200		
T 1.0 HR. STORM DURATION 3 HR.	7	1.490	2,990		
	8	1.735	2,620		
POINT RAINFALL 2.3 IN.	9	1.985	2,270		
ADHISTED RAINEALL!	10	2.240	2,000		
AREAL : FACTOR IN	11	2,480	1,730	ļ	
DURATION: FACTOR IN,	12	2.720	1,315		
94	13	2,980	880		
RUNOFF CAIRVE NO84	14	3.220	566`		
Q <u>0.95</u> IN.	15	3.480	330		
	16	3.720	195		
HYDROGRAPH FAMILY NO3	17	3.970	112		
0.7	18	4.220	77		
COMPUTED T _p 0.7 HR.	19	4.470	47	·	
	20	4.720	.24]	
T ₀ HR.	21	4.960	18		
	22	5.210	12		
(T_0/T_p) :	23	5.460	6		
COMPUTED 3.13 USED 3	24		0		
0.72	25				
REVISED T 0.73	26			·	
4844 6.200 ccc	27				
$q_{p} = \frac{484A}{REV. T_{p}} = \frac{6.200}{CFS}$	28			ļ	
$(QXq_{p}) =$	29				
IVAUB, -	30	<u> </u>			
$\text{(COLUMN)} = (\text{t} \bigwedge^{\prime} \text{T}_{\text{p}}) \text{ REV. } \text{T}_{\text{p}} \qquad \text{(COLUMN)} = (\text{q}_{\text{c}} \wedge \text{q}_{\text{p}} \text{XQXq}_{\text{p}})$	31				
·	32	Monti	Estimated		
$Q(COLUMN) = (Q_1/Q)Q$ Q _{peak} = 3,200 cfs	33	l —	01 0000		
	34	Sep		? 	

TABLE All. HYDROGRAPH COMPUTATION FOR OCTOBER

\$C\$-ENG-319 Rev. 1-70 File Code ENG-13-14

U S DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

HYDROGRAPH COMPU	DATE COMPUTED BY CHECKED BY				
	[t · (t/T _p)Rev. T _p	q -(q _e /q _p)(q _e) - p	Q, =(Q,/Q)Q	
WATERSHED OR PROJECT Manoa-Paloto Stream	ł	1	· · · · · · ·	Q	
	1	HOURS	CFS	INCHES	
STATEHawall		0	0	0	
	2	0.207	47		
STRUCTURE SITE OR SUBAREA Ala Wai Canal	3	0.414	484		
	4	0.621	1,350	• • • • • • • • • • • • • • • • • • • •	
DR. AREA 9.35 SQ. MI. STRUCTURE CLASS	5	0.827	2,240	<u> </u>	
STROUGHE SERIES	6	1.033	2,590		
T _c 1.0 HR, STORM DURATION 2 HR.	1	1.240	2,480		
POINT RAINFALL 1.8 IN.	В	1.450	2,220		
- ·	9	1.655	1,910		
ADJUSTED RAINFALL:	10	1.860	1,490	,	
AREAL: FACTOR1 IN1.8	11	2.070	1,050		
DURATION: FACTOR IN	12	2.280	698		
RUNOFF CURVE NO. 84	13	2.480	457	· -	
RUMUFF CURVE NO.]4	2.690	300		
Q1N.	15	2.900	197		
HYDROGRAPH FAMILY NO3	16	3.100	130	•	
TIDAUGARA CAMILIAU.	17	3.310	79		
COMPUTED T ₀ 0.70 HR. (0.7 T _C)	18	3.520	43		
COMPOTED 1 HR.	19	3.730	24		
* 1.37 up	20	3.930	1'6		
T ₀ 1.37 HR.	21	4.140	8		
(T / T):	22	4.350	4		
(T ₀ / T _p): COMPUTED 1.95 . USED 2	23	4.560	0		
OFFI OTED	24		-		
REVISED T _p 0.69	25				
p	26				
$q_0 = \frac{484A}{2550} = \frac{6,550}{2}$ CFS.	27				
$q_p = \frac{484A}{REV. T_p} = \frac{6.550}{-6.550} CFS.$	28				
$(Q)(q_p) = \underline{\qquad \qquad 3,940 \qquad \qquad } CFS.$	29				
- γ = · · · · · · · · · · · · · · · · · ·	30				
$f(COLUMN) = (I/T_p) REV, T_p$ $q(COLUMN) = (q_c/q_p)(Q)(q_p)$	31		-		
ץ ע בי	32		Estimated	Number	
$Q(COLUMN) = (Q_1/Q)Q$ $Q_{peak} = 2,590 \text{ cfs}$	33	Month	of Occurr		
, F	34	0ct	3		

TABLE A12. HYDROGRAPH COMPUTATION FOR NOVEMBER

SCS-ENG-319 Rev. 1-70 File Code ENG-13-14 U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

HYDROGRAPH COMPUTATION COMPUTED BY					
		:=(1/T _p)Rev, T _p	η : (α _C /α _P ΗΩΧα _P)	$Q_t = (Q_t/Q)Q$	
MATERSHED OR PROJECT Manoa-Palolo Stream		<u> </u>	q	Q	
TATE ASSESS THE PROJECT	ļ	POURS	CFS	INCHES	
TATE Hawaii	1	0	0	0	
	2	1.070	42		
TRUCTURE SITE OR SUBAREA Ala Wal Canal	3	2.140	125_		
	4	3.220	290		
IR. AREA 9-35 SQ. MI. STRUCTURE CLASS	5	4.290	497		
	6	5. <u>360</u>	1,830_		
1.0 HR. STORM DURATION 24 HR.	1	6.440	4,380		
COINT RAINFALL 5.6 IN.	8	7.500	3,040		
	9	8.580	2,020		
ADJUSTED RAINFALL:	10	9.650	1,500_		
AREAL: FACTOR1 IN5.6	н	10.700	1,187		
DURATION: FACTOR IN,	17	11.800	1,020	<u></u>	
	13	12.900	915		
RUNOFF CURVE NO. 84	14	13.940_	811		
)3.8IN.	15	15.000	728		
2	16	16.100	686		
YDROGRAPH FAMILY NO2	17	17.200	645		
0.70	18	18.200	603		
COMPUTED T _p 0.70 HR.	19	19.300	583	<u> </u>	
	20	20.400	561		
T _o HR.	21	21.500	290		
	22	22.500	83	<u> </u>	
(T _a / T _p): COMPUTED29.50 USED25	23	23.600	21	<u> </u>	
COMPUTED	24	24.700	<u> </u>	<u> </u>	
0.825	25			<u></u>	
REVISED T _p 0.825	26			<u> </u>	
498A 5.500 cee	27				
$q_p = \frac{484A}{REV. T_p} = \frac{5,500}{\text{CFS}}.$	28				
$(Q)(q_p) = \frac{20.840}{}$ CFS.	29			<u> </u>	
Mindbi	30				
$K(COLUMN) = (t / T_p) REV. T_p$ $q(COLUMN) = (q_c / q_p)(Q)(q_p)$	31			<u> </u>	
Management - constitution by the second of t	32	.1 م د	Estimate		
Q(COLUMN) = $(Q_1/Q)Q$ Q _{peak} = 4,380 cfs	33	Month ——	01 000		
Alanzamia (d. a.c sheak	34	Nov		1	

TABLE A13. HYDROGRAPH COMPUTATION FOR DECEMBER

SCS-ENG-319 Rev. 1-70 File Code ENG-13-14

U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

HYDROGRAPH COMPU	TATIC		UTED BY	-
		i (t/T _p)Rev. T _p	η∵{α _ε /α _ρ κΩκα _ρ ι	Q _t :(Q _t /Q)Q
WAYERSHED OR PROJECT Manoa-Palolo Stream		t	q.	Q
		HOURS	CFS	INCHES
STAFE Hawaii	ı	0	0	0
	2	0.245	23	
STRUCTURE SITE OR SUBAREA Ala Wai Canal	3	0.490	498	
· · · · · · · · · · · · · · · · · · ·	4	0.735	1,635	
OR, AREA 9.35 SQ. MI. STRUCTURE CLASS	5	0.980	2,760	
	TATION COMPUTED BY CHECKED BY	3.070		
T 1.0 HR. STORM DURATION 3 HR.	7	1.470	2,870	
POINT RAINFALL 2.2 IN.	8	1,710	2,520	
ADJUSTED RAINFALL:	9	1.960	2,180	
	10	2.200	1,920	
AREAL : FACTOR1 IN2.2	11	2.450	1,660	
DURATION: FACTOR IN	12	2.690	1,260	
RUNDEF CURVE NO84	13	2.940	845	
RUNDI F GURVE NO.	14	3.180	543	<u> </u>
0.9 IN.	15	3.530	317	
HYDROGRAPH FAMILY NO3	16	3.670	187	
NIIMAAAA FAMILI NU	17	3.920	107	
COMPUTED T _p 0.70HR (0.7 T _c)	18	4.160	74	
COMPATIED I	[9	4.410	45	
T ₀ HR.	20	4.660	_23	
o nr.	21_	4.900	17	
(T / I) ·	22	5.140	11 _	i
(T ₀ / T _p): COMPUTED 3.08 USED 3	23	5.390	6	
;	24	5.630	0	
REVISED T _p O.72	25		<u> </u>	
	26			
q = 484A = 6,290 CFS.	27			
$q_p = \frac{484A}{REV. T_p} = \frac{6,290}{CFS}$	28			
$(QXq_0) = 15,660$ CFS.	29			
	30			
$\text{(COLUMN)} = (\textbf{I} \land \textbf{I}_p) \text{ REV. } \textbf{I}_p \qquad \text{ q(COLUMN)} = (\textbf{q}_c \land \textbf{q}_p \textbf{X} \textbf{Q} \textbf{X} \textbf{q}_p)$	31			
ų v • • • •	32	MA1.	Estimated	
$Q(COLUMN) = (Q_t/Q)Q$ $Q_{peak} = 3.070 \text{ cfs}$	13		of Occur	
феак эзого ота	34	Dec	3	l .

TABLE A14. HYDROGRAPH COMPUTATION (100-YR, 6-HR RAINFALL OF 10 INCHES, $T_{\rm C}=1$ HR, $T_{\rm O}/T_{\rm P}=10$)

\$C\$-ENG-319 Rev. 1-70 File Cope ENG-13-14

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

HYDROGRAPH COMPUTATION COMPUTED BY					
	Ţ	i -(1/T _p lRev, T _p	n: (q _c /q _p µQ)(q _p)	$Q_{1}\cdot(Q_{1}/Q)Q$	
WATERSHED OR PROJECT Manoa-Palolo Stream	Ì	l	q	Q	
WATERSHED ON THUSEOF		HOURS	CE2	INCHES	
STATEHawa i 1	ī	0	0	0	
	2	0.308	130		
TRUCTURE SITE OR SUBAREA Ata Wai Canal	3	0.616	860		
THOUTONE SHE ON SUDANEN	•	0.295	1,780		
IR, AREA 9-35 SD. MI. STRUCTURE CLASS	5	1,240	3,100		
7 MILA 30, MIL	6	1.550	4,680		
1.0 HR. STORM DURATION 6 HR.	1	1.860	7,580		
•	8	2.170	18,350		
OINT RAINFALL 1D IN. (100-yr. 6-hr storm)	9	2.480	26,000		
ADJUSTED RAINFALL:	10	2.780	21,200	ļ 	
AREAL: FACTOR IN	ŋ	3.100	14,850		
DURATION: FACTOR IN	17	3.410	11,500		
	13	3.720	8,970		
NUNOFF CURVE NO	14	4.030	7,250		
<u>8.0</u> 1N,	15	4.330	6,070		
	16	4.650	5,210		
YDROGRAPH FAMILY NO2	17	4.960	4,820	ļ -	
0.70	18	5.260	4,490		
COMPUTED T _p 0.70 HR.	19	5.570	4,290	<u> </u>	
	20	5.880	3,500		
т _{р.}	71	6.200	1,780	<u> </u>	
	22	6.460	790	<u> </u>	
T _o / T _p): COMPUTED 7-85 USED 10	23	6.780	400		
COMPUTED; USED;	24	7.070	200		
0.55	25	7.400	130		
REVISED T _p 0.55	26	7.700	70_		
$I_p = \frac{884A}{REV. T_n} = \frac{8,250}{CFS}$	27	8.010	0	ļ —	
b = REV. T	28				
$QYa_p) = 66,000$ CFS.	29			1	
(A) 1	30			<u> </u>	
$\mathbf{q}(\mathbf{CDEUMN}) = (1/T_{\mathbf{p}}) \mathbf{REV}, \mathbf{T}_{\mathbf{p}}$ $\mathbf{q}(\mathbf{CDEUMN}) = (\mathbf{q}_{\mathbf{c}}/\mathbf{q}_{\mathbf{p}}) \mathbf{q}(\mathbf{q}_{\mathbf{c}})$	31			<u> </u>	
done new to the first term of	32			1	
$Q(COL(HMN)) = (Q_1/Q)Q$ $Q_{peak} = 26,000 \text{ cfs}$	33				
Annenum - (A) And Abeak	34	1			

TABLE A15. HYDROGRAPH COMPUTATION (100-YR, 6-HR RAINFALL OF 10 INCHES, $T_{\rm C}=1$ HR, $T_{\rm O}/T_{\rm p}=6$)

\$CS-ENG-119 Rev. 1-70 File Code ENG-13-14

D S DEPARTMENT OF AGRICULTURE THE CONSTRUCTION SERVICE

HYDROGRAPH COMPU	TATION COMPUTED BY				
		L ft/T _p iffex, T _p	a tag/ap/KQKap)	0, 10, 010	
WATERSHED OR PROJECT Manoa-Palolo Stream		ı	q	Q	
		HOURS	CF\$	INCHES	
STATE Hawaii	1	0	0	0	
	2	0.410	118		
STRUCTURE SITE OR SUBAREA Ala Wai Canal	3	0.900	710	-	
	4	1.216	1,610		
DR. AREA 9:35 SQ. MI. STRUCTURE CLASS	5	1.620	3,300		
	6	2.020	6,910		
Y 1.0 HR, STORM DURATION 6 HR.	'	2.430	15,200		
POINT RAINFALL 10 IN. (100-yr, 6-hr storin)	8	2.840	19,550		
ADJUST O RAINF ALL	9	3.240	16,900		
	18	3.640	13,200		
AREAL FACTOR	11	4.040	10,140		
OURATION - FACTOR IN	17	4.450	7,950		
RUNOFF CHRVE NO. 84	13	4.860	6,450		
	34	5.260	5,470		
8.0 IN.	15	5.660	4,780		
HYDROGRAPH FAMILY NO	16	6.070	3,930		
	17	6.470	2,360	.	
COMPLITED T _D 0.70 MR,	ìĦ	6.880	1,300		
p ,	19	7.280	710		
T ₀ 5.5 HR.	20	7.770	350		
0	71	8.100	200		
Τ ₀ / Τ _p)	27	8.500	120	-	
COMPUTED 7.85 USED 6	23	8.900	80		
,	<u> </u>	9.310	40 —		
REVISED T 0.92	25	9.700	- °-	<u> </u>	
•	76		 		
$I_p = \frac{484A}{REV, T_p} = \frac{4.94D}{CFS}$	11 -		 	}· · -	
•	78	ļ <u>. </u>			
0/4 _p) - 39,300 CFS.	29 		 	-	
(COLIMN) - $(1/T_p)$ REV, T_p q(COLUMN) = (q_c/q_p) Q(q_p)			 		
			 -	-	
	32		 		
$Q(COLUMN) = \{Q_{t}/Q(Q) \qquad \qquad Q_{peak} = 19,550 \text{ cfs}$	73		!	ļ. — 	

TABLE A16. HYDROGRAPH COMPUTATION (100-YR, 1-HR RAINFALL OF 6 INCHES, $T_{\rm C}$ = 1 HR)

\$65 FNG 314 Rev. (-70 File Code FNG 1314

16. § TIEPARTMENT OF ADMITUTURE SON TUNSERVATON SERVICE

HYDROGRAPH COMPUTATION COMPUTED BY CHESKED BY					
		in (T _{pl} Rev. 1 _p	դ աղ գրագաղ	$Q_{\mathbf{t}}/(Q_{\mathbf{t}}/Q_{\mathbf{t}})$	
NATEHSIED OR PROJECT Manoa-Palolo Stream	1	1	q	ij.	
ACCUMATE CONTROLLER		16:0185	CES	INCHES	
STAIF Hawaii	·)	9	lı lı	0	
<u>-</u>	2	0.230	610		
STRUCTURE SITE OR SUBAREA Ala Wai Canal	3	0.460	3,940	·	
11 (A. RIDAREA 12 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	0.688	11,150		
R AREA 9-35 SOLMI, STRUCTURE CLASS	5	0.920	18.600		
10 All 10 Al	CHICAL CHICAL PRev 1 15 15 16 17 17 18 17 18 18 18 18	20,530			
T 3.0 HR, STORM DVRATION		1.378	17,860		
· C		1.608	12,780		
POINT RAINFALL 6 IN.	q	1.840	8,830	 -	
ADJUSTED RAINFALL	10	2.060	5,950		
AREAL FACTOR NR 6	31	2.300	2,850	ļ <u>.</u>	
DURATION: FACTOR IN.	17	2.520	2,630		
84	13	2.750	1,800		
RUNAFF CURVE NO	14	2.980	1,200		
)4,2IN.		3.220	1/0		
NYDROGRAPH FAMILY NO	16	3.440	540		
STERNING ARTER TOUL	ן יו	3.660	350		
2000UTED X 0.70 HB	18	_2900	210	;	
COMPUTED T _p 070 HR.		4.120_	90		
1 <u>0.82</u> HR		4.360	50		
I _D	71	4.580_	20		
(1 ₀ / Τ _b)	27	4.800		 	
COMPUTED			ļ	ļ	
,			 	 	
REVISED T _p 0.82		! 	 		
	!				
$q_p = \frac{484A}{REV. T_p} = \frac{5.510}{CFS}$ CFS.	<u>ا</u> - ا		<u> </u>	├ · ─	
•		·-·	 		
(QNQ _p) = 23,200 CFS	 	 -	 	 	
	—	 	 	 	
$\mathbf{g}(\mathbf{COLUMN}) = (\mathbf{I} \setminus \mathbf{I}_{\mathbf{p}}) \text{ REV. } \mathbf{I}_{\mathbf{p}} \qquad \mathbf{g}(\mathbf{COLUMN}) = (\mathbf{q}_{\mathbf{c}} \wedge \mathbf{q}_{\mathbf{p}}) \mathbf{Q}(\mathbf{x}_{\mathbf{p}})$	—	<u> </u>		 	
	—	 	<u> </u>	 	
$Q(COLUMN) = (Q_{1}/Q)Q \qquad \qquad Q_{peak} = 20.530 \text{ cfs}$	} -	 	 -	 	
	34	<u> </u>	<u> </u>		

TABLE A17. HYDROGRAPH COMPUTATION (100-YR, 1-HR RAINFALL OF 4 INCHES, $T_{\rm C}=1$ HR)

SCS ENG 319 Rev. 1-70 Ede Cade ENG 13 14

U S BEPAREMENT OF AURICULTURE STILL CONSERVATION SERVICE

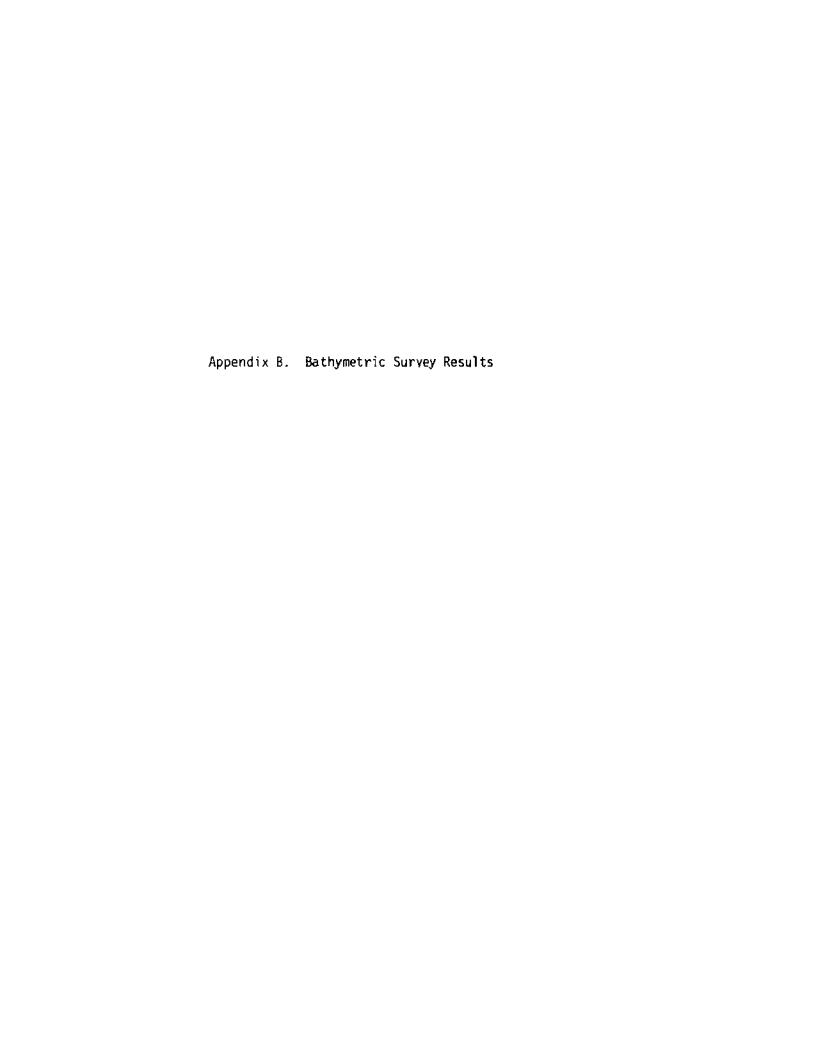

HYDROGRAPH COMPUTATION COMPUTED BY					
		t dt‴glRe≠ T _p	artac ap x Q × ap ·	$Q(Q^*)Q \mapsto Q$	
MATERSHED OR PROJECT Manua-Paloto Stream		i	q	Q	
CHAPTER THE COLUMN TO THE COLUMN		10085	CES	IN CH ES	
TATE Hawaii	ŀ	П	0	0	
	7	0.230	350		
TRUCTURE SITE OR SUBAREA Ala Wai Canal)	0.460	2,250		
Transferred Street Street	4	0.688	6,360		
OR AREA 9.35 SO MI. STRUCTURE CLASS	5	0.920	10,630		
And	6	1.148	11,720		
THR STORM DURATIONH HR.	7	1.378	10,200		
· ·	8	1.608	7,300		
COINT RAINFALL 4, , IN.	q	1.840	5,040		
ADJUSTED RAINFALL	10	2.060	3,400		
AREAL FACTOR IN4	11	2.300	2,200		
DIBRATION FACTOR	17	2.520	1,500		
UNOUF CURVENO. 84	13	2.750	1,030	<u> </u>	
RINGER CHRYENO	14	2.980	<u>69</u> 0	ļ <u> </u>	
2 <u>2 4 </u> IN	15	3.220	440		
AYOROGRAPH FAMILY NO	16	3.440	310	<u> </u>	
YUROGRAPH FAMILY NU	17	3.660	200	<u> </u>	
0.70	1R	3.900	120		
COMPUTED 1 _p	19	4.120	50	ļ	
0.82	70	4.360	30	ļ	
т _о 0. <u>82</u> нк.	21	4.580		<u>.</u> .	
	72	4.800	0	ļ	
COMPUTED 1.17 USED 1.17	23	<u> </u>	ļ	<u> </u>	
COMPOSED : 1/3CD :	74	Ī	 -		
0. 82	75	Ĭ			
REVISED 1 0.82	76	Ī	ļ		
$q_{p} = \frac{484A}{8EV. T_{p}} \cdot \frac{5.510}{5.510} \cdot CFS$	2!	<u> </u>		-	
$\mathbf{q}_{\mathbf{p}} = \frac{\mathbf{REV. T}_{\mathbf{p}}}{\mathbf{REV. T}_{\mathbf{p}}}$	78		<u> </u>		
$(0*n_p) = 13,250$ CFS.	29	<u> </u>	<u> </u>		
, t	30				
$\text{RCOLUMN}(\cdot,\cdot,\cdot) \wedge T_{\underline{p}}) \text{ REV}_{\cdot},T_{\underline{p}} = -\text{arcolumn}(\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,\cdot,$	31	I			
ų v	37	L			
QCOLUMN) = $(Q_{peak}/Q)Q$ Qpeak = 11,720 cfs	33		<u></u>		
. A skean	34		<u> </u>	_ _ i	

TABLE A18. HYDROGRAPH COMPUTATION (100-YR, 1-HR RAINFALL OF 4 INCHES, $T_{\rm c}$ = 0.6 HR)

SCS-ENG-119 Rev. 1-70 File Code FNG-13-14

D S DEPARTMENT OF AGRECULTURE STOLE CONSERVATION SERVICE

HYDROGRAPH COMPUT	DATE				
		t-(I/J _p)fley [_p	ու ու Հարևնադր	Q_{i} (Q_{i}, Q_{i})	
MATERSHED OR PROJECT Hanoa-Palolo Stream	ì	l di	0	9	
		HOURS	CFS	INCHES	
TATE Hawaii	1	0	1)	0	
	7	0.115	106		
TRUCTURE SITE OR SUBAREA Ala Wai Canal	3	0.230	1,060	-	
	1	0.344	4,500		
R AREA 9-35 SQ. MI. STRUCTURE CLASS	5	0.460	11,300		
	ĥ	0.574	17,070		
0.6 HR, STORM DURATION T HR.	1	0.689	18,960		
c 'GINT RAINFALL <u>4*</u> IN. (100-yr, 1-hr storm)	R	0.804	17,900		
ADJUSTED RAINFALL:	9	0.920	15,200		
	10	1.030	12,500		
AREAL FACTOR1 IN,4	11	1.150	9,760		
DURATION: FACTOR IN	17	1.260	6,550	<u></u>	
UNOFF CURVE NO. 84	11	1.375	4,450		
	4	1.490	2,990	ļ	
)2.41N.	-15	1.610	1,990	ļ	
IYDROGRAPH FAMILY NO2	16	1.720	1,320		
TIDNOGRAFII TAMIL I NO	17	1.830	900		
CAMPBILLED 1 0.42 MB	18	1.950	560		
OMPUTED 1 _p 0.42 HR.	19	2.060	370		
T 0.82 HR.	70	2.180	210		
0	21	2.290	106	ļ <u> </u>	
τ _α / τ _ο):	22	2.400	80	<u> </u>	
COMPUTED 1.95 USED 2	23	2.520	50		
,	24	2.630	30		
REVISED T _p O.41	75	2.750	0		
	76	ļ			
$I_{p} = \frac{484A}{REV, T_{D}} = \frac{11,020}{CFS}.$	27	 	<u> </u>	ļ <u>.</u>	
	28	ļ <u>-</u> -	<u> </u>	ļ	
$(0.04_{\rm p}) = \underline{26,500}$ CFS.	29	 	<u> </u>	ļ	
	30		<u> </u>	ļ	
$ (COLUMN) = (t / T_p) REV, T_p$ $q(COLUMN) = (q_c / q_p)(Q)(q_p)$	31		<u> </u>	ļ	
•	32	<u> </u>	<u> </u>	 	
$Q(COL(IMN)) = {Q_{\downarrow}/Q(Q)}$ $Q_{peak} = 18,960 \text{ cfs}$	33		<u> </u>	<u> </u>	
•	34			1	

Profiles of Ala Wai Canal (Ala Moana Bridge to Lewers Street)

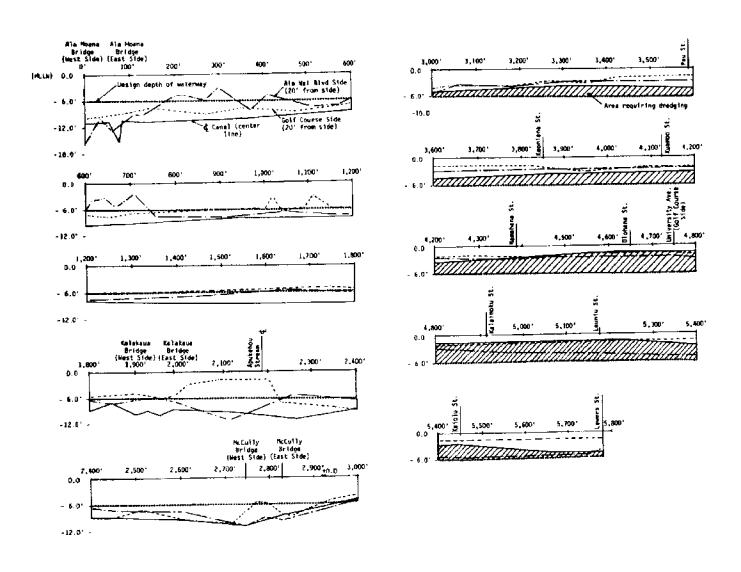


Figure B1. Bathymetric Survey Results of Ala Wai Canal

Profiles of Ala Wai Canal (Lewers Street to Ainakea Way) November 25, 1972



Figure B1. Bathymetric Survey Results of Ala Wai Canal (continued)

Cross Sections of Ala Wai Canal

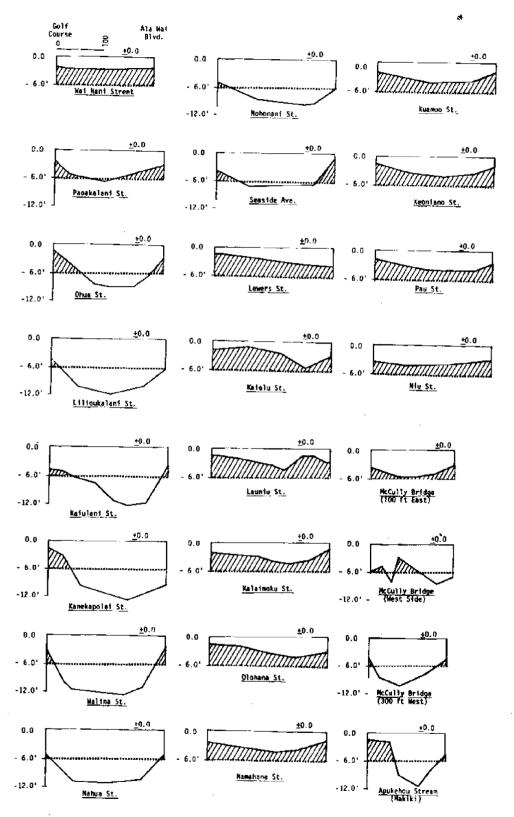


Figure B1. Bathymetric Survey Results of Ala Wai Canal (continued)

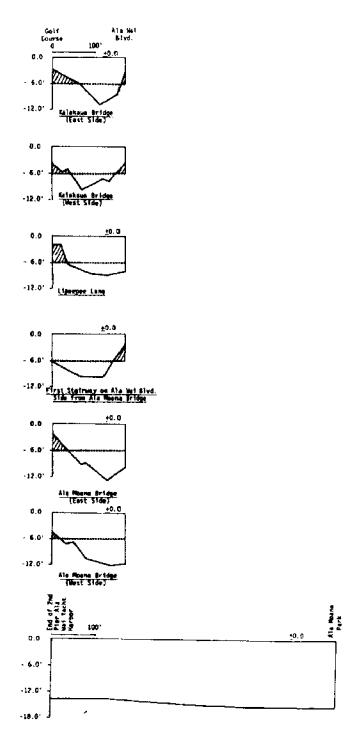


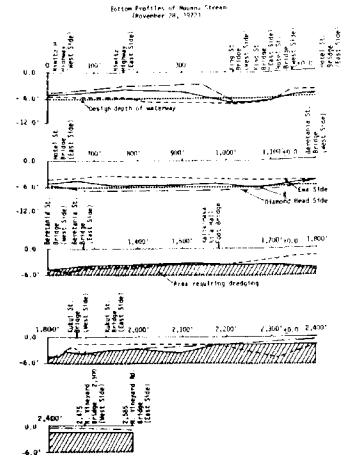
Figure B1. Bathymetric Survey Results of Ala Wai Canal (continued)

Profiles of Manoa-Palolo Drainage Canal November 25, 1972 500' ±0.0 600' (ALLS) 0 0 orth side (10 ft from) Ala Mai Canal Area requiring dredging Desire depth of waterway 1,100° ±0.0 1,200° 7001 8001 0.0 Orainage Can 1,700" en.g 1,800" 1,400 1,500 = 1,200° 1,300 Profiles of 1 5 2,100 2,200' 1,900 \$,000 No survey on the south side of Renos-Palaio Drainage Canal was made. Assume the death will be about the same on the south side of the case! 0.0 Palolo Streem -- Ala Wei Blyd. Cross Section (Repeatability) 1001 Minummatil Profiles of Entrance Channel (Repeatability) Ala Moana Bridge 0.0 - 6.01 -12.01

Figure 82. Bathymetric Survey Results of Manoa-Palolo Drainage Canal

Cast boat speed

0.0


 -12.0°

-18.61 -

1,100

1,0001

Profiles of Nuuanu Stream November 28, 1972

Cross Sections of Nuuanu Stream

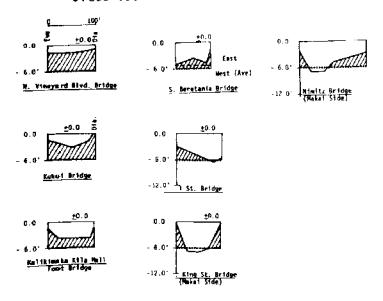
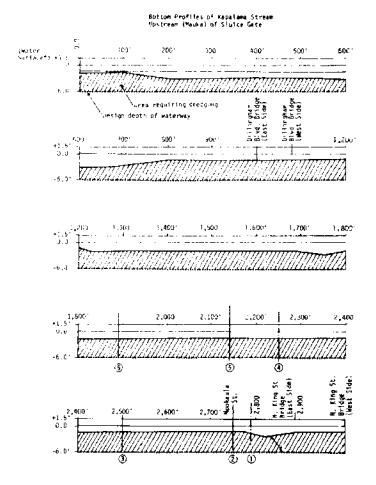



Figure B3. Bathymetric Survey Results of Nuuanu Stream

Profiles of Kapalama Stream Upstream (Mauka) of Sluice Gate

Mater surface is at +1.50 under normal condition (no nunoff); the water surface is 0.40 ft higher upstream the sluice gate than the downstream side of the sluice gate. Tide at time is +1.7 ft.

Figure B4. Bathymetric Survey Results of Kapalama Stream

Cross Sections of Kapalama Stream

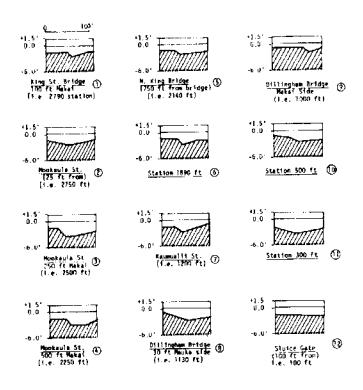


Figure B4. Bathymetric Survey Results of Kapalama Stream (continued)

Profile of Kapalama Stream Downstream (Makai) of Sluice Gate

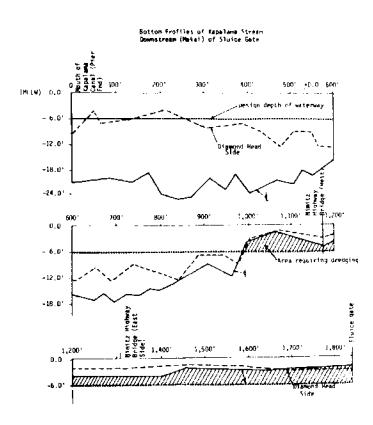


Figure 84. Bathymetric Survey Results of Kapalama Stream (continued)

Cross Sections of Kapalama Stream

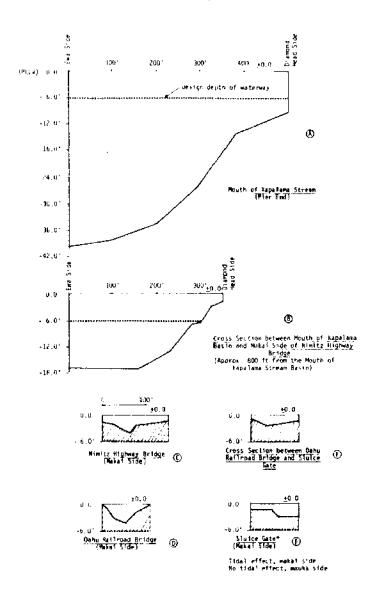


Figure B4. Bathymetric Survey Results of Kapalama Stream (continued)